

Models and Algorithms

for Knowledge-Based Decision Support and Simulation

in Defence and Transport Applications

ataparaT weingibZ

 smhtiroglA dna sledoM
egdelwonK rof - noisiceD desaB troppuS noitalumiS dna

ecnefeD ni tropsnarT dna snoitacilppA

wasraW)dnaloP(1102

reweiveR : P kyzcńajlemA jezrdnA .for

fed eht ni sessecorp lortnoc dna dnammoC htiw xelpmoc yrev era niamod ecne
 spihsnoitalerretni gnorts htiw selbairav ynam gnivlovni ,seitivitca evisnetni fo noitamrofni

noisiced yratilim ni laitnesse yllaicepse era hcihw ,srotcaf eht fo owT .ytniatrecnu dna -
 dna sserts dleifelttab namuh era gnikam ot tnatropmi yrev si ti ,eroferehT .emit detimil

noisiced rof ,evig - stceffe etalumis ,snoisiced rieht troppus hcihw ,sloot retupmoc ,srekam
 noisiced no sserts rieht fo tcapmi evitagen etanimile yllaitrap ot yrt dna snoisiced eseht fo

ht netrohs ,edam gnieb noisiced e - .gniniart fo eerged eht evorpmi dna emit gnikam

 smhtirogla dna sledom gnitsixe esylana dna wen tneserp ot si koob siht fo laog niam ehT
 ,snoitacilppa tropsnart dna ecnefed ni yllaicepse ,noitalumis dna troppus noisiced rof

egdelwonk a ni - desab lanoitatupmoc no desucof ylniam evah skrow ehT .tnemnorivne
 gnitsixe ni ssenlufesu rieht sa llew sa smhtirogla detneserp fo ycarucca dna ytixelpmoc

retupmoc wen dna - fo noitargetni ehT .smetsys noitalumis dna troppus noisiced desab
gla dna sledom detneserp ni gnikam noisiced taht sesuac sloot retupmoc htiw smhtiro

 .retupmoc a tuohtiw naht evitceffe erom dna retsaf ,reisae eb yam snoitautis xelpmoc
 fo ytirojam a ni tub ,yranilpicsidretni era smhtirogla dna sledom detneserp eht fo ynaM

ed no sucof ew sesac eht .snoitacilppa ecnef

niarret :rof smhtirogla dna sledom tneserp eW - ,noitisopmoced(gninnalp shtap desab
 ,gniludehcs noitazinorhcnys tnemevom ,)tniojsid dna airetircitlum ,noituloseritlum

iced fo noitacifitnedi(sessecorp noisiced detceles fo noitazitamotua htiw snoitautis nois
 noisiced ,sehcaorppa ytiralimis shparg dethgiew airetircitlum dna srotcev ecnatsid
 gnitarepooc dna laudividni fo noitalumis tnemevom sa llew sa)hcram a ot atamotua

.stcejbo puorg

htirogla dna sledom detneserp fo snoitacilppa detceleS :sa hcus smetsys laer ni sm neicolZ ,
uruG , tabmoCSM , SRaVAC .dessucsid neeb evah

gnidaerfoorp hsilgnE : iksweliG hceicjoW

ngised revoC : anydeF arabraB

noitidE sraW ,I wa 1102

 yb thgirypoC © joW wtcinwadyW ajckadeR sk jenzcinhceT iimedakA jewo

 yb thgirypoC © ataparaT weingibZ sraW , wa 1102

 NBSI 879 - 38 - 45926 - 51 -5

rehsilbuP : ceT aimedakA awoksjoW anzcinh

00 - 2 ogeiksilaK .S .lu ,awazsraW 809

yb detnirP : .H.P.P R fargime
 30 ,11 awozsutaR .lu - awazsraW 054

CONTENTS

ACRONYMS .. 3

1. INTRODUCTION ... 5

1.1. RESEARCH DOMAIN ... 5

1.1.1. A Short Description .. 5

1.1.2. Knowledge-Based Decision Support .. 7

1.1.3. Knowledge-Based Simulation .. 8

1.2. RESEARCH OBJECTIVES AND THESES .. 12

1.3. CONTENTS OF THE BOOK .. 13

1.4. AUTHORSHIP AND BIBLIOGRAPHY REMARKS ... 16

2. ENVIRONMENTAL MODELLING FOR KNOWLEDGE-BASED DECISION MAKING AND

 SIMULATION ... 17

2.1. AN OVERVIEW .. 17

2.2. TERRAIN-BASED APPROACHES FOR PATHS PLANNING... 20

2.3. TERRAIN MODEL IN THE ZLOCIEN SYSTEM AS AN EXAMPLE OF BATTLEFIELD ENVIRONMENT MODEL 23

3. MODELS AND ALGORITHMS FOR MOVEMENT PLANNING .. 30

3.1. INTRODUCTION ... 30

3.2. DECOMPOSITION AND MULTIRESOLUTION PATHS PLANNING ... 32

3.2.1. Description of the Problem .. 32

3.2.2. Definitions and Notations .. 33

3.2.3. Decomposition Shortest Paths Algorithm (DSP) .. 37

3.2.4. Experimental Analysis of the DSP Algorithm ... 40

3.2.5. Parallelization of the DSP Algorithm ... 45

3.2.6. Multiresolution Paths and the DSP Algorithm ... 52

3.3. MULTIOBJECTIVE PATHS PLANNING .. 54

3.3.1. Description of the Problem .. 54

3.3.2. State of the Art in Multiobjective Shortest Paths Problems (MOSP) 55

3.3.3. Model of the MOSP Problem ... 59

3.3.4. Methods of Solving the MOSP Problems ... 63

3.3.5. Numerical Examples and Analysis ... 79

3.4. DISJOINT PATHS PLANNING ... 84

3.4.1. Description of the Problem .. 84

3.4.2. Definition of the Problem .. 87

3.4.3. Description of Algorithms for Solving DP Problems ... 96

3.4.4. Experimental Analysis of the Algorithms ...103

3.5. SUMMARY ...107

APPENDIX 3.A.1. PROOF OF THEOREM 3.1 ..109

4. MODELS AND ALGORITHMS FOR MOVEMENT SYNCHRONIZATION 112

4.1. INTRODUCTION ...112

4.2. MOVEMENT SYNCHRONIZATION SCHEDULING (MSS) ..113

4.2.1. Scheduling Models of Synchronous Movement ...113

4.2.2. Scheduling Algorithms for Movement Synchronization .. 124

4.2.3. Experimental Analysis of the Algorithms .. 138

4.3. MULTICRITERIA MOVEMENT SYNCHRONIZATION SCHEDULING (2CMSS PROBLEM) 141

4.3.1. Definition of the 2CMSS Problem .. 142

4.3.2. Methods for Solving 2CMSS Problem .. 144

4.3.3. Numerical Example ... 144

4.4. SUMMARY ... 146

5. AUTOMATIZATION AND SIMULATION OF SELECTED DECISION PROCESSES 147

5.1. INTRODUCTION .. 147

5.2. IDENTIFICATION OF DECISION SITUATIONS ... 148

5.2.1. Description and Definition of the Problem .. 148

5.2.2. Distance Vector Approach ... 150

5.2.3. Multicriteria Weighted Graphs Similarity (MWGSP) Approach 151

5.3. DECISION AUTOMATA FOR A MARCH .. 163

5.3.1. The March Planning Process ... 163

5.3.2. The Direct March Control .. 169

5.3.3. Automata Implementation ... 172

5.4. METHODS FOR MOVEMENT SIMULATION OF INDIVIDUAL AND GROUP OBJECTS 174

5.4.1. Method for Movement Simulation of Individual Objects .. 174

5.4.2. Method for Movement Simulation of Group Objects .. 180

5.4.3. Method for Cooperating Objects Movement Simulation and Management 181

5.5. SUMMARY ... 182

6. SELECTED APPLICATIONS IN REAL SYSTEMS ... 184

6.1. MOVEMENT PLANNING AND SIMULATION IN THE ZLOCIEN AND MSCOMBAT SYSTEMS 184

6.1.1. Simulation Based Operational Training Support System (SBOTSS) Zlocien and

 MSCombat: a Short Overview ... 184

6.1.2. Models and Algorithms for Movement Planning .. 185

6.1.3. Models and Algorithms for Movement Simulation ... 188

6.1.4. Practical example .. 190

6.2. KNOWLEDGE-BASED PATTERN RECOGNITION TOOLS TO SUPPORT MISSION PLANNING AND SIMULATION ..

 ... 193

6.2.1. A Short Overview of CAVaRS and Guru Systems ... 193

6.2.2. Practical Example of Using CAVaRS .. 194

6.3. APPLICATIONS IN SECURITY AND CRISIS MANAGEMENT SYSTEMS ... 198

6.3.1. MWGSP Approach ... 198

6.3.2. Specific Paths Planning Models ... 202

SUMMARY AND CONCLUSIONS .. 207

BIBLIOGRAPHY .. 210

STRESZCZENIE ... 233

Acknowledgements

This book is a result of research carried out in various projects, which

enabled me to meet and work with different researchers. Therefore, I would

like to gratefully thank all of my co-workers and friends who worked with

me and contributed to write this book.

Special thanks to my friends and mentors: Prof. Andrzej Najgebauer −

my first scientific tutor, and Prof. Ryszard Antkiewicz − my first chief and

long-standing co-worker. Their knowledge, support and scientific leadership

were a great inspiration in my daily work.

I would also like to express my gratitude to Prof. Andrzej Ameljańczyk

for his remarks, which helped to improve this book.

This book is especially dedicated to my wife Jola and daughter Wiktoria

for their patience and love.

 Zbigniew Tarapata

 Warsaw, Poland, June 2011

Acronyms

Acronym Description

2CMSS 2-Criteria Movement Synchronization Scheduling

ADAMS Allied Deployment and Movement System

BST Binary Search Tree

C2 Command and Control

C3 Command, Control and Communications

C3I Command, Control, Communications and Intelligence

C4ISR Command, Control, Communications, Computers,

Intelligence, Surveillance and Reconnaissance

CAVaRS Course of Action Verification and Recommendation
Simulation System

CAX Computer Assisted Exercises

CBS Corps Battle Simulation

CCTT Close Combat Tactical Trainer

CGF Computer Generated Forces

CoA Course of Action

DAG Directed Acyclic Graph

DEM Data Exchange Mechanism

DIS Distributed Interactive Simulation

DP Disjoint Paths

DSP Decomposition Shortest Paths

DSS Decision Support System

FIFO First In First Out

FPTAS Fully Polynomial Time Approximation Scheme

GAMS General Algebraic Modelling System

Guru System of Automatic Tools for Decision Support − Guru

HA Hierarchical Algorithm

HLA High Level Architecture

HSP Hybrid Shortest Path

JC3IEDM Joint Consultation, Command and Control Information

Exchange Data Model

JTLS Joint Theatre Level Simulation

KB Knowledge Base

LRTA* Learning RTA*

Acronyms

4

MIP Multilateral Interoperability Program

ModSAF Modular Semi-Automated Forces

MOSP Multiobjective (Multicriteria) Shortest Paths

MPM Movement Planning Manager

MS Movement Synchronization

MSA Movement Synchronization Algorithms

MSCombat Modelling & Simulation System of Combat

MSM Movement Synchronization Manager

MSS Movement Synchronization Scheduling

MSSD Movement Synchronization Scheduling with Distance

MSST Movement Synchronization Scheduling with Time

MWGSP Multicriteria Weighted Graphs Similarity Problem

NDRP-Max Node Disjoint Restricted Paths minimize maximal cost

NDRP-Sum Node Disjoint Restricted Paths minimize total cost

NDSP Node Disjoint Shortest Paths

PDM Pape-D'Esopo-Moore algorithm

PDSP Parallel Decomposition Shortest Paths

PIMTAS Predictive Intelligence Military Tactical Analysis System

PRDS Pattern Recognition of Decision Situations

QoS Quality of Service

RPLUM Route Planning Uncertainty Manager

RSPP Restricted Shortest Paths Problem

RTA* Real-Time A*

RTEF Real-Time Edge Follows

SAF, SAFOR Semi-Automated Forces

SATDS Guru System of Automatic Tools for Decision Support − Guru

SBOTTS Zlocien Simulation-Based Operational Training Support System −
Zlocien

SGDP Subgraphs Generating Disjoint Paths

SPT Shortest Paths Tree

SSA Simulation System Architecture

TDN Time-Dependent Network

TIN Triangulated Irregular Network

TMA Tactical Movement Analyzer

VPF Vector Product Format

Zlocien Simulation-Based Operational Training Support System −
Zlocien

1. Introduction

1.1. Research Domain

1.1.1. A Short Description

Decision making is an inseparable element of human life. Many of human

decisions concern complex problems solving. These problems have properties,

which distinguish them from simple problems (Pohl et al., 2003): they can involve

many related issues or variables; some of the variables may be only partially

defined and some may yet to be discovered; complex problem situations are

pervaded with dynamic information changes; solution objectives may change; they

typically have more than one solution. The solution of complex problems can be

categorized as intensive information activity, which its success depends largely on

the availability of information resources and, in particular, the experience and

reasoning skills of the decision-makers. This clearly presents an opportunity for the

useful employment of computer-based Decision Support Systems (DSS) in which the

capabilities of the human decision-maker are complemented with knowledge

bases, expert agents, and self-activating conflict identification and monitoring

capabilities. Therefore, we can write the following definition of the DSS

(Holsapple & Whinston, 1996):

"The Decision Support System (DSS) is a computer-based information system

that supports business or organizational decision-making activities".

In general, in the decision making process the following stages are considered

(Najgebauer, 1999a): recognition of a decision situation, determination of possible

decision variants, decision choice, estimation of effects of decisions being realized,

modification or changing the decision.

Each of these stages can be supported by a computer. A computer support causes

that decision making may be easier, faster and more effective than without

a computer. Several models and methods from such domains as operations

research (e.g. simulation, optimization, games theory, etc.), pattern recognition,

transportation (e.g. paths planning), analysis of algorithms are used. Each of these

methods can be supported by a computer as well.

One of the most complicated and complex decision processes concerns

military applications. Much has been written in literature about the complexities of

planning and execution of these processes (Dockery & Woodcock, 1993; Ground et

al., 2002; Moffat, 2003; Najgebauer, 1999a; Pohl et al., 2003; Przemieniecki, 1994;

1. Introduction

6

Sawyer, 1995). Military command and control processes are information intensive

activities, involving many variables (tasks of friendly forces, expected actions of

opposite forces, environmental conditions – terrain, weather, time of the day and

season of the year, current state of own (friend) and opposite forces in the sense of

personnel, weapon systems and military materiel, etc.) with strong

interrelationships and uncertainty. Two of the factors which are especially essential

in military decision-making are human battlefield stress and a limited time.

Therefore, it is very important to give, for military decision-makers, computer

tools, which support their decisions and try to partially eliminate the negative

impact of their stress on the decision being made and shorten the decision-making

time. Moreover, the information sources are typically widely distributed and

subject to continuous change. In such a case, in order to improve situational

awareness, data fusion and integration is done (Antkiewicz et al., 2010b; 2010d;

Chmielewski, 2008a; Chmielewski & Kasprzyk, 2008b; Koszela & Chmielewski,

2008; Najgebauer et al., 2008d; Smart et al., 2005).

A typical military decision planning process is similar to a general decision making

process described earlier and it contains the following steps:

1. the assessment of both own and opposite forces, terrain as well as other factors

which may have an influence on a task realization,

2. the identification of a decision situation,

3. the determination of decision variants (Course of Actions, CoA),

4. the variants (CoA) evaluation (verification),

5. the recommendation of the best variant (CoA) chosen among these that meet the

proposed criteria.

One of the methods which can be used in the military decision planning process is

computer simulation (Najgebauer, 1999a). Simulators are used in the following

steps of this process: (4) the variant verification (via simulation) and (5) the variant

recommendation. Moreover, simulation can also be used for:

• optimization of command chains of military units,

• evaluation of the military operational rules and improving the command and

control procedures,

• research of the military equipment’s parameters, which modify results of

military actions,

• quality verification of battlefield process models (shooting, target searching,

movement, etc.).

In other words: simulation results can be used to make or change decisions. On the

other hand, simulation is one of the basic methods in military trainings

(Najgebauer, 1999a). This is the second main role of the simulation in the military

area.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

7

 One of the most important decision problems in the military area (but not

only in this area) is movement planning. Object movement is an essential element

of combat actions and it is related to manoeuvre planning of military detachments

on the battlefield during battle as well as during preparation for battle. This

process is very important from the point of view of simulating a complex system. It

may have an effect on accuracy, adequacy, effectiveness and other characteristics

of these systems. Redeployment planning and simulation of military objects is

a basic problem, especially in combat simulators. Moreover, movement (paths,

routing, motion) planning is also an essential element in other applications: civilian

transportation, mobile robots, car navigation, virtual agents in computer games,

etc. These properties make this problem as interdisciplinary and multi-domains.

This problem should be solved using specialized algorithms to avoid its internal

complexity (Tarapata, 2003b). Therefore, movement planning and simulation

models and algorithms are one of the main problems considered in this book.

In the military domain, decision support and simulation systems can support

systems of class C4ISR (Command, Control, Communications, Computers, Intelligence,

Surveillance and Reconnaissance) and their types1 (Pohl et al., 2003; Ground et al.,

2002). In order to make better decisions, these systems should be

a knowledge-based (KB). Models and algorithms for these two fields: decision

support and simulation in KB environment are the most interesting from this

book's point of view.

1.1.2. Knowledge-Based Decision Support

 As it has been written in the previous chapter, the Decision Support System

(DSS) should be a knowledge-based system. In this context knowledge can be

described as (Pohl et al., 2003):

 "(...) experience derived from observation and interpretation of past events or

phenomena, and the application of methods to past situations. Knowledge bases

capture this experience in the form of rules, case studies, standard practices, and

typical descriptions of objects and object systems that can serve as prototypes.

Problem solvers typically manipulate these prototypes, in several different ways.

Therefore, we use our knowledge of past similar situations as a baseline for

defining the current problem system and developing a solution strategy (...)".

An example of a knowledge-based decision support system schema for

military applications (borrowed from Guru system (Guru, 2005)) is presented in

Fig. 1.1. We can observe two elements, which contain a knowledge base (KB):

operational-tactical KB and terrain KB. The first one is used to collect knowledge

being used to express the character of the digital battlefield during automation of

1 C2=Command and Control; C3I=Command, Control, Communications and Intelligence, etc.

1. Introduction

8

military decision-making: military rules, decision situation patterns and

recognition rules, course of action (CoA) patterns, etc. The second one (terrain KB)

collects pre-processed information from the terrain database. For example, in

chapter 2.3 we presented a network model of the terrain (with rule-based functions

described on the network's nodes and arcs) in the Zlocien simulation system, which

is based on pre-processed information from the terrain database, and in chapters

5.2-5.3 we use the operational-tactical KB to identify decision situations and

automatization of the march process.

Other examples of knowledge-based decision support systems in the military

area can be found in (Ground et al., 2002; Pohl et al., 2003).

Fig. 1.1. An example of a knowledge-based decision support system schema for military
applications (Guru, 2005)

For paths planning as one of the main elements in terrain(knowledge)-based

decision support and simulation systems we can indicate many examples of

knowledge-based applications: for mobile robots (Guo et al., 2010; Heero, 2006;

Hodal & Dvorak, 2008; Hu et al., 2004; ; Nagarajan & Raja, 2010; Stentz, 1994; Weng

et al., 2009; Zafar et al., 2006) and for the military (Campbell et al., 1995;

Gilmore & Semeco, 1985; Lee & Fishwick, 1995; Lee, 1996; Logan & Sloman, 1997b;

Rajput & Karr, 1994).

1.1.3. Knowledge-Based Simulation

 The knowledge-based simulation was conceived at the RAND Corporation in

the late 1970’s and early 1980’s applying artificial intelligence to simulation

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

9

(Rothenberg et al., 1989). One of the applications has been considered deals with

knowledge-based validation of simulation results in the military domain (Kornell,

1987; Madni et al., 1987). Other applications (civilian) of knowledge-based

simulation have been described in (Cheung et al., 2007; Duran & Costaguta, 2009;

Oren, 2001; Robinson et al., 2005; Zeigler et al., 1991; 1996). Simulation is used,

because a knowledge-based simulation is understood as a compilation of simulation and

artificial intelligence techniques, hence it is agent-based (Oren, 2001). The agent

simulation allows simulation of natural or engineered entities with cognitive

abilities. Therefore, agent simulation is very appropriate for the simulation of

intelligent entities. Agent-based simulation is the use of agent technology to

generate the behaviour of models. There are many applications of agent-based

simulation in the military area. In the paper (Reece, 2003) the author has developed

a movement behaviour model for soldier agents who populate a virtual battlefield

environment. Paper (Cil & Mala, 2010) proposes a two-layer hybrid agent

architecture to match the needs of future multi-dimensional warfare. This

architecture has an integrated simulation tool to simulate planning results from the

cognitive layer via reactive agents. In the paper (Zafar et al., 2006) the authors show

the possibility of using hybrid architecture that implements mine detection,

obstacle avoidance and route planning with a group of autonomous agents with

coordination capabilities. Groups of inter cooperating multi agents working

towards a common goal have the potential to perform a task faster and with an

increased level of efficiency then the same number of agents acting in an

independent manner. The paper (Montana et al., 2000) discusses the

proof-of-concept of an automated system for scheduling all the transportation for

the United States military down to a low level of detail. Their approach is to use

a multi-agent society with each agent performing a particular role for a particular

organization. They show that the usage of a common multiagent infrastructure

allows easy communication between agents, both within the transportation society

and with external agents generating transportation requirements. In the paper

(Gelenbe et al., 2004) authors describe how a complex and simulation environment

can be used to fuse information about the behaviour of groups of objects of

interest. The fused information includes the objects' individual pursuits and aims,

the physical and geographic setting within which they act, and their collective

social behaviour. The group control algorithms combine reinforcement learning,

social potential fields and imitation. The paper (Sahin et al., 2008) deals with

bio-inspired computation techniques, such as genetic algorithms, for real-time

self-deployment of mobile agents to carry out tasks similar to military applications.

In the paper (Wang, 2006) authors build stochastic mathematical models, in

particular G-network models of behaviour. They have demonstrated their

approach in the context of urban military planning and analyzed the obtained

10

results. The results are validated against those obtained from a simulator. The

results suggest that the proposed approach has tackled one of the classical

problems in modelling multi

performance at low computational cost.

For many years in military applications a simulated battlefield

training military personnel. There are at least three ways to provide the simulated

opponent:

• two groups of trainees in simulators may oppose each other (often used);

• human instructors who are trained to behave in a way that mimics the desired

enemy doctrine (seldom used);

• computer system that generates and controls multiple simulation entities using

software and possibly a human operator.

The last approach is known as a

a Computer Generated Force (

Simulation (DIS) systems to control large numbers of autonomous battlefield

entities using computer equipment and software rather than humans in simulators.

The advantages of the

• they lower the cost of a

simulators that must be purchased and maintained;

• CGF can be programmed, in theory, to behave according to the tactical doctrine

of any desired opposing force, and so eliminate

human operators to behave like the current enemy;

• CGF can be easier to control by a single person than an opposing force made up

of many human operators and it may give the training instructor greater

control over the training

Fig. 1.2. A potential simulation system a

1. Introduction

results. The results are validated against those obtained from a simulator. The

results suggest that the proposed approach has tackled one of the classical

in modelling multi-agent systems and is able to predict the systems’

ance at low computational cost.

For many years in military applications a simulated battlefield

training military personnel. There are at least three ways to provide the simulated

two groups of trainees in simulators may oppose each other (often used);

human instructors who are trained to behave in a way that mimics the desired

emy doctrine (seldom used);

computer system that generates and controls multiple simulation entities using

software and possibly a human operator.

The last approach is known as a Semi-Automated Force (SAF

(CGF). The CGF is used in military Distributed Interactive

) systems to control large numbers of autonomous battlefield

entities using computer equipment and software rather than humans in simulators.

the CGF are well-known (Petty, 1995):

they lower the cost of a DIS system by reducing the number of standard

simulators that must be purchased and maintained;

can be programmed, in theory, to behave according to the tactical doctrine

of any desired opposing force, and so eliminate the need to train and retrain

human operators to behave like the current enemy;

can be easier to control by a single person than an opposing force made up

of many human operators and it may give the training instructor greater

control over the training experience.

simulation system architecture for military applications (Dompke, 2001)

results. The results are validated against those obtained from a simulator. The

results suggest that the proposed approach has tackled one of the classical

agent systems and is able to predict the systems’

For many years in military applications a simulated battlefield is used for

training military personnel. There are at least three ways to provide the simulated

two groups of trainees in simulators may oppose each other (often used);

human instructors who are trained to behave in a way that mimics the desired

computer system that generates and controls multiple simulation entities using

SAF or SAFOR) or

Distributed Interactive

) systems to control large numbers of autonomous battlefield

entities using computer equipment and software rather than humans in simulators.

system by reducing the number of standard

can be programmed, in theory, to behave according to the tactical doctrine

the need to train and retrain

can be easier to control by a single person than an opposing force made up

of many human operators and it may give the training instructor greater

(Dompke, 2001)

Z. Tarapata − Models and Algorithms for Knowledge

A potential simulation system architecture (

system inside the SSA

cooperate with C3I systems.

Fig. 1.3. Modules of the

The role of each of the modules

(Dompke, 2001):

(1) the Data Collection

elements as instructed by

module are as follows:

(1.1) get data request,

(1.2) find data,

(1.3) prepare data,

(1.4) provide data reference;

(2) the Situation Assessment

need to be collected, interprets the mission received by the

current assessment of the situation and

meaningful events. Basic f

(2.1) produce data requests,

(2.2) interpret and fuse data

(2.3) monitor critical events

(2.4) maintain an updated situation;

(3) the Option Generation

triggering event, mission

functions of this module are as follows:

(3.1) generate possible courses of action;

− Models and Algorithms for Knowledge-Based Decision Support and Simulation..

A potential simulation system architecture (SSA) and the location of

 is presented in Fig. 1.2. Note that CGF

systems.

. Modules of the CGF rational/cognitive model (Dompke, 2001)

The role of each of the modules in CGFs (see Fig. 1.3) can be described as follows

ollection module is responsible for gathering the detailed data

by the situation assessment module. Basic f

(1.1) get data request,

(1.4) provide data reference;

ssessment module defines the detailed data requirements that

interprets the mission received by the CGF

current assessment of the situation and defines and monitors

ic functions of this module are as follows:

roduce data requests,

interpret and fuse data,

monitor critical events,

updated situation;

eneration module develops courses of action (CoA

triggering event, mission statement and current situation assessment.

of this module are as follows:

generate possible courses of action;

and Simulation... 11

location of the CGF

CGF can and should

rational/cognitive model (Dompke, 2001)

can be described as follows

module is responsible for gathering the detailed data

Basic functions of this

module defines the detailed data requirements that

CGF, updates the

defines and monitors critical and

unctions of this module are as follows:

CoA) based on the

nd current situation assessment. Basic

1. Introduction

12

 (4) the Decision-Making module evaluates the various courses of action and ranks

them according to a set of pre-determined and derived criteria. It will also support

the negotiation process between CGFs or human decision makers that may be

required to develop a solution for the larger context in which the CGFs decision are

included. Basic functions of this module are as follows:

(4.1) rank options,

(4.2) goals decision making approach,

(4.3) negotiate;

(5) the Communication module supports the exchange of data between the CGF

and all other elements of the simulation system. It transforms data into the

appropriate format for local and external interpretation. Basic functions of this

module are as follows:

(5.1) interface,

(5.2) report.

Selected technologies (important from our point of view) which are used by

functions of CGFs are as follows (function number − technology (criticality: (L)ow,

(M)edium, (H)igh)): (1.2) − knowledge discovery (L), knowledge based system (L),

pattern recognition (L); (2.1) − knowledge discovery (H); (2.2) − pattern recognition

(H); (3.1) − search algorithms (H), knowledge based system (H), models and

methods of operations research (L); (4.1) − models and methods of operations

research (H); (4.2) − planning algorithms (H), search algorithms (H).

From the description presented above results, that the CGF systems are strongly

knowledge-based and they use models and methods of operations research.

As an inseparable part of the CGF, modules for route planning based on the

real-terrain models are used (Ceranowicz, 1994; Dompke, 2001; Henninger et al.,

2000; OneSAF, 2008; Tuft et al., 2006). For example in ModSAF (Modular

Semi-Automated Forces), in module "SAFsim", which simulates the entities, units,

and environmental processes the route planning component is located

(Longtin & Megherbi, 1995).

Moreover, automated route planning will be a key element of almost any

automated terrain analysis system that is a component of military C4ISR systems.

1.2. Research Objectives and Theses

The main goal of this book is to present new and analyse existing models and

algorithms for decision support and simulation, especially in defence and transport

applications, in a knowledge-based environment. The works have mainly focused

on computational complexity and accuracy of presented algorithms as well as their

usefulness in existing and new computer-based decision support and simulation

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

13

systems. Many of the presented models and algorithms are interdisciplinary but in

the majority of cases we focus on defence and transport applications.

It should be emphasized that the goal of this book are not problems

concerning knowledge representation, knowledge acquisition, knowledge

discovery, building expert systems, etc., but providing the models and algorithms

to support the decisions and simulate their effects in DSSs and simulation systems,

which are knowledge-based and the described algorithms can use this knowledge.

 The main research theses presented in the book are as follows:

T1. knowledge-based decision support and simulation are effective methods to

support decisions and simulate their effects in a dynamically changing

environment and can be used in defence and transport applications;

knowledge may concern an environment as well as decision processes being

analysed;

T2. automatization of decision processes allow us to research these processes (e.g.

using simulation) as well as decrease the cost and the time of complex process

analysis;

T3. the use of specialized algorithms (which are new or adapted from existing

algorithms) for solving decision problems can decrease computational

complexity and/or increase accuracy of traditional algorithms; these

algorithms can and should be a part of the knowledge-based DSSs and/or

simulation systems.

 These theses are verified in chapters of this book, which are organized as

presented below.

1.3. Contents of the Book

Presented in chapter 2 is the review of methods of environment modelling for

knowledge-based decision making and simulation. A few methods of digital map

representation are described: the visibility diagram, Voronoi diagram, straight-line

dual of the Voronoi diagram, edge-dual graph, line-thinned skeleton, regular grid

of squares, grid of homogeneous squares coded in a quadtree system (as

a representation of multiresolution terrain). An example is described of the terrain

knowledge-based model being used in the real simulation Zlocien system.

Moreover, four main approaches concerning terrain representation that are used in

a battlefield simulation for paths planning have been described: free space

analysis, vertex graph analysis, potential fields and grid-based algorithms.

Movement (paths, routing, motion) planning is an essential element in many

applications: transportation, mobile robots, car navigation, virtual agents in

computer games, military route planning, etc. Therefore, chapter 3 contains

1. Introduction

14

a detailed discussion on three main models and algorithms for terrain-based paths

planning: (1) decomposition and multiresolution approach to path planning, (2)

multiobjective (multicriteria) paths planning and (3) disjoint paths planning.

In the first case, a decomposition method (DSP – decomposition shortest paths) is

presented and its properties, which decrease computational time of path searching

in multiresolution and large graphs. The goal of the method is not only

computation time reduction but, most of all, using it for multiresolution path

planning. A theoretical and experimental analysis of the method is discussed,

especially from the computational complexity and accuracy point of view. The

parallelization method of the DSP algorithm is also analysed. An example of using

this method in a multiresolution battlefield simulation is described.

In the second case, selected multicriteria (multiobjective) approaches for the

shortest path problems are presented. Classification of the multiobjective shortest

path problems (MOSP) is given. Different models of MOSP problems are discussed

in details. Methods of solving formulated optimization problems are presented.

Analysis of complexity of presented methods and ways of adaptation of classical

algorithms for solving multiobjective shortest path problems are described. The

GAMS model for one of the MOSP problems is defined. Comparison of

effectiveness of solving selected MOSP problems defined as: mathematical

programming problems (using CPLEX 7.0 solver) and multi-weighted graph

problems (using modified Dijkstra’s algorithm) is given. Experimental results of

using the presented methods for multicriteria path selection in a terrain-based grid

network are given.

In the third case, specific disjoint paths planning models and algorithms are

considered. We classify disjoint-paths planning problems and formulate

two types of problems of node-disjoint paths visiting specified nodes: NDRP-Sum

and NDRP-Max. The first one (NDRP-Sum) minimizes the total cost of all (K>1)

disjoint paths visiting specified nodes in the restricted area and the second one

(NDRP-Max) minimizes the maximal cost of any of the K disjoint paths.

Exemplified GAMS models for both problems are defined. For solving the

NDRP-Sum and NDRP-Max problems we propose the subgraphs generating-based

algorithm (SGDP). Some experimental results with a discussion of the complexity

and accuracy of the algorithm are shown in detail. Moreover, we show how to use

modifications of the Busacker-Gowen and Edmonds-Karp minimal-cost flow

algorithms to solve problems of the node-disjoint paths case.

Presented applications and examples of methods being described concern military

applications, but these methods are interdisciplinary.

 Chapter 4 deals with models and algorithms for the nonlinear optimization

problem of multi-objects movement scheduling to synchronize their movement

(MS problem) as well as properties of the presented algorithms. For synchronous

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

15

movement, two categories of criteria are defined: the time of movement and

"distance" of K>1 moved objects from the movement pattern. Similarities and

differences between defined problems and the classical tasks scheduling problem

in parallel processors are shown. Two algorithms for synchronous movement

scheduling are proposed and their properties are considered. One of the

algorithms is based on the dynamic programming approach and the second one

uses approximation techniques. Moreover, we formulated the multicriteria

movement synchronization scheduling problem (2CMSS problem). The model

consists of two parts: (1) node-disjoint path planning visiting specified nodes for K

objects with a given vector of intermediate nodes for each one (NDSP problem); (2)

movement synchronization in intermediate nodes (MS problem). We defined the

problem as a discrete-continuous, nonlinear, two-criterion mathematical

programming problem. We proposed to use a two-stage algorithm to solve the

2CMSS problem (as a lexicographic solution): at first we have to find the vector of

node-disjoint shortest paths for K objects visiting intermediate nodes to set optimal

paths under the assumption that we use maximal possible velocities on each arc

belonging to a path for each object (the solution of the NDSP problem using

algorithms described in chapter 3), and next we try to decrease values of velocities

to optimize the second criterion (synchronization, solution of the MS problem

using algorithms described in this chapter). Theoretical and experimental analysis

of the complexity and accuracy of the algorithms as well as their practical

usefulness are discussed.

In chapter 5 the idea and model of command and control processes applied to

the decision automata for attack, defence and marching on the battalion level as

well as methods for movement simulation of individual and group objects are

considered. The decision automata being presented replace battalion commanders

in some simulator for military trainings and it executes two main processes:

decision planning process and direct combat (or march) control. One of the

elements of the decision planning process is an identification of the decision

situation. Therefore, the model of the decision situation and two algorithms for

decision situation identification are presented. The first one is based on a distance

vector approach and the second one − on a multicriteria weighted graph similarity

approach (MWGSP problem). Some numerical examples have been described. In

the decision automata to march, the march planning process (containing: march

organization determination and detailed march schedule determination) and the

direct march control (containing: march simulation, identifying fault situations

during a march simulation and automata reactions, velocity calculations and fuel

consumption calculation) as well as techniques regarding automata

implementation have been presented. Moreover, methods for movement

simulation of individual and group objects based on the MODSIM simulation

1. Introduction

16

language have been discussed. These discussions are supplemented by the

presentation of the method for cooperating objects movement simulation and

management in real simulation system like CGFs.

Chapter 6 contains selected applications of described models and methods in

real systems. We showed applications of methods described in chapters 3, 4 and 5

for movement planning and simulation in Simulation-Based Operational Training

Support System - Zlocien and Modelling & Simulation of Combat - MSCombat. Next, we

presented using these methods in knowledge-based pattern recognition tools to

support military mission planning and simulation (in systems Guru and CAVaRS).

Additionally, applications of the presented models and methods in security

(especially in early warning systems) and crisis management systems are

discussed.

Finally, remarks and conclusions concerning the described models,

algorithms and related problems are presented.

1.4. Authorship and Bibliography Remarks

 The author of this book is the author of the majority of presented models and

algorithms. Authorship concerns: all models and algorithms presented in chapters

2.3, 3, 4, 5 and 6.1 (excluding: (1) computer implementation of the SGDP and DSP

algorithms in chapter 3 − these implementations have been done by two

supervised students; (2) the model of the decision situation in chapter 5.2.1 and (3)

the method described in chapter 5.2.2). In the remaining cases the author of this

book is the co-author. The majority of these models and algorithms are used in real

systems: Zlocien, Guru, MSCombat, CAVaRS. These applications are described in

separate chapters, especially in chapter 6.

Detailed state of the art and bibliography concerning problems presented in

the book are discussed in suitable chapters. However, the fundamental sources of

information for the newest research results were the following scientific journals

and conference proceedings: Computers & Operation Research, Networks, Journal of

the ACM, Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence,

Conference on Computer Generated Forces and Behavioural Representation, IEEE

Computational Intelligence for Security and Defence Applications Conference, Military

Communication and Information Systems Conference and technical reports from

selected research projects in which the author of this book has participated as

a member or as the project manager: (Antkiewicz et al., 2000; 2009d; Guru, 2005;

Tarapata, 1999c; 2008f; 2010h; Zlocien, 2002).

In this book we consequently use separate notations in each chapter. However, in

some cases we use the same notations as were previously used − in such a case we

refer to these ones.

2. Environmental Modelling for Knowledge-Based

Decision Making and Simulation

2.1. An Overview

The terrain database-based model is being used as an integrated part of the

military DSS and CGF systems as well as in civilian applications. Terrain data can

be as simple as an array of elevations (which provides only a limited means to

estimate mobility) or as complex as an elevation array combined with digital map

overlays of slope, soil, vegetation, drainage, obstacles, transportation (roads, etc.)

and the quantity of recent weather (Joe & Feldman, 1998). For example authors

(Benton et al., 1995) describe HERMES (Heterogeneous Reasoning and Mediator

Environment System), which allows the answering of queries that require the

interrogation of multiple databases in order to determine the start and destination

parameters for the route planner.

One of the most popular representations of the terrain is a graph

representation. There are a few approaches, in which the map (representing

a terrain area) is decomposed into a graph. All of them first convert the map into

regions of go (open) and no-go (closed). The no-go areas may include obstacles and

are represented as polygons. A few methods of map representation is used, for

example: visibility diagram, Voronoi diagram, straight-line dual of the Voronoi

diagram, edge-dual graph, line-thinned skeleton, regular grid of squares, grid

of homogeneous squares coded in a quadtree system, etc. (Benton et al., 1995;

Schiavone et al., 1995; Schiavone et al., 2000; Tarapata, 2003a).

The polygonal representations of the terrain are often created in Database

Generated Systems (DBGS) through a combination of automated and manual

processes (Schiavone et al., 1995; Schiavone et al., 2000). It is important to say that

these processes are computationally complicated, but are conducted before

simulation (during the preparation process). Typically, an initial polygonal

representation is created from the digital terrain elevation data through the use of

an automated triangulation algorithm, resulting in what is commonly referred to

as a Triangulated Irregular Network (TIN). A commonly used triangulation algorithm

is the Delaunay triangulation. The definition of the Delaunay triangulation may be

done via its direct relation to the Voronoi diagram of set S with an N number of 2D

points: the straight-line dual of the Voronoi diagram is a triangulation of S.

2. Environmental Modelling for Knowledge-Based Decision Making and Simulation

18

The Voronoi diagram is the solution to the following problem: given set S with

an N number of points in the plane, for each point pi in S what is the locus of points

(x,y) in the plane that are closer to pi than to any other point of S?

The straight-line dual is defined as the graph embedded in the plane obtained

by adding a straight-line segment between each pair of points of S whose Voronoi

polygons share an edge. Fig. 2.1a depicts an irregularly spaced set of points S, its

Voronoi diagram, and its straight-line dual (i.e. its Delaunay triangulation).

The edge-dual graph is essentially an adjacency list representing the spatial

structure of the map. To create this graph, we assign a node to the midpoint

of each map edge, which does not bound an obstacle (or the border). Special nodes

are assigned to the start and goal points. In each non-obstacle region, we add arcs

to connect all nodes at the midpoints of the edges, which bound the same region.

The fact that all regions are convex, guarantees that all such arcs cannot intersect

obstacles or other regions. An example of the edge-dual graph is presented

in Fig. 2.1b.

The visibility graph, is a graph, which nodes are the vertices of terrain

polygons and edges join pairs of nodes, for which the corresponding segment lies

inside a polygon. An example is shown in Fig. 2.2. This idea is used to find optimal

flight path in a segmented airspace (Kulas et al., 2008).

(a) (b)

Fig. 2.1. (a) Voronoi diagram and its Delaunay triangulation (Schiavone et al., 1995);

(b) Edge-dual graph. Obstacles are represented by filled polygons

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

19

Fig. 2.2. Visibility graph (Mitchell, 1999). The shortest geometric path from the source node

s to the destination t is marked by dashed bold line. Obstacles are represented by filled polygons

The regular grid (mesh) of squares (or hexagons, e.g. in JTLS system (JTLS,

1988)) divides terrain space into the squares with the same size and each square is

treated as having homogeneity from the point of view of terrain characteristics (see

Fig. 2.3).

The grid of homogeneous squares coded in quadtree system divides terrain space

into the squares with a heterogeneous size (Fig. 2.4). The size of the square results

from its homogeneity according to terrain characteristics. An example of this

approach was presented in (Tarapata, 2000d). This approach represents

multiresolution terrain modelling which is also used for battlefield terrain

modelling (Behnke, 2004; Cassandras et al., 2000; Chou et al., 1998; Davis et al., 2000;

Magillo & Bertocci, 1998; Pai & Reissell, 1994; Tarapata, 2003a). This is a nature of

hierarchical structure of military units and methods of their behaviours on

a simulated battlefield. For a company level of units greater precision of terrain

(environment) model is required than e.g. for the brigade level. Very good

definition of multiresolution terrain is presented in (Magillo & Bertocii, 1998):

"(...) The concept of multiresolution refers to the possibility of using different

representations of a spatial entity, having different levels of accuracy and

complexity. Multiresolution models allow trading off accuracy of representation

and amount of data to be manipulated. Multiresolution representations of terrains

are of great interest when large quantities of data are available and/or large areas

are modeled (...)".

In many existing simulation systems there are different solutions regarding

terrain representation. In the JTLS system (JTLS, 1988) terrain is represented using

hexagons with a size ranging from 1km to 16km. In the CBS system (CBS, 2001)

terrain is similarly represented, but an additional vectoral-region approach is

applied. In the Simulation-Based Operational Training Support System (SBOTTS)

Zlocien (Najgebauer, 2004a; 2004b) and the System of Automatic Tools for Decision

Support (SATDS) − Guru (Guru, 2005) a dual model of the terrain: (1) as a regular

2. Environmental Modelling for Knowledge-Based Decision Making and Simulation

20

network of terrain squares with square size 200mx200m, (2) as a road-railroad

network, which is based on a digital map, is used (Tarapata, 2004b; 2004c). This

model is presented in details in chapter 2.3.

(a) (b)

Fig. 2.3. Examples of terrain representation in a simulated battlefield: (a) regular grid of terrain
hexagons; (b) regular grid (mesh) of terrain squares and its graph representation with 8 neighbours

(a) (b)

Fig. 2.4. (a) Partitioning of the selected real terrain area into squares of topographical homogeneous
areas; (b) Determination of possible links between neighbouring squares and a description of

selected vertices in the quadtree system for terrain area presented in (a)

Advantages and disadvantages of terrain representations and their usage for

terrain-based movement planning are presented in chapter 2.2.

2.2. Terrain-Based Approaches for Paths Planning

There are four main approaches concerning terrain representation that are

used in a battlefield decision support and simulation for paths planning (Karr et al.,

1995): free space analysis, vertex graph analysis, potential fields and grid-based

algorithms.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

21

In the free space approach, only the space not blocked and occupied by

obstacles is represented. For example, representing the centre of movement

corridors with Voronoi diagrams (Schiavone et al., 1995) is a free space approach

(see Fig. 2.1). The advantage of Voronoi diagrams is that they have efficient

representation. Disadvantages of Voronoi diagrams are as follows: they tend to

generate unrealistic paths (paths derived from Voronoi diagrams follow the centre

of corridors while paths derived from visibility graphs clip the edges of obstacles);

the width and trafficability of corridors are typically ignored; distance is generally

the only factor considered in choosing the optimal path.

In the vertex graph approach, only the endpoints (vertices) of possible path

segments are represented (Mitchell, 1999). Advantages of this approach: it is

suitable for spaces that have sufficient obstacles to determine the endpoints.

Disadvantages are as follows: determining the vertices in "open" terrain is difficult;

trafficability over the path segment is not represented; factors other than distance

can not be included in evaluating possible routes.

In the potential field approach, the goal (destination) is represented as an

"attractor", obstacles are represented by "repellers", and the vehicles are pulled

toward the goal while being repelled from the obstacles. Disadvantages of this

approach: the vehicles can be attracted into box canyons from which they can not

escape; some elements of the terrain may simultaneously attract and repel.

In the regular grid approach, the grid overlays the terrain, terrain features are

abstracted into the grid, and the grid rather than the terrain is analyzed.

Advantages are as follows: analysis simplification. Disadvantages: "jagged" paths

are produced because movement out of a grid cell is restricted to four (or eight)

directions corresponding to the four (or eight) neighbouring cells; granularity (size

of the grid cells) determines the accuracy of terrain representation.

In many of the existing simulation systems there are different solutions

regarding this subject (Benton et al., 1995; Campbell et al., 1995, Kreitzberg et al.,

1990; Longtin & Megherbi, 1995; Tarapata, 2003a). In the work of (Benton et al.,

1995) authors describe a combined on-road/off-road planning system that was

closely integrated with a geographic information system and a simulation system.

Routes can be planned for either single columns or multiple columns. For multiple

columns, the planner keeps track of the temporal location of each column and

insures they will not occupy the same space at the same time. In the same paper

the Hierarchic Route Planner as the integrate part of the Predictive Intelligence Military

Tactical Analysis System (PIMTAS) is discussed. In the paper (James et al., 1999)

authors presented an on-going effort to develop a prototype for ground operations

planning, the Route Planning Uncertainty Manager (RPLUM) tool kit. They apply

uncertainty management to terrain analysis and route planning since this activity

supports the commander’s scheme of manoeuvre from the highest command level

2. Environmental Modelling for Knowledge-Based Decision Making and Simulation

22

down to the level of each combat vehicle in every subordinate command. They

extend the PIMTAS (Benton et al., 1995) route planning software to accommodate

results of reasoning about multiple categories of uncertainty. Authors of the paper

(Campbell et al., 1995) presented route planning in the Close Combat Tactical Trainer

(CCTT). Kreitzberg (Kreitzberg et al., 1990) has developed the Tactical Movement

Analyzer (TMA). The system uses a combination of digitized maps, satellite images,

vehicle type and weather data to compute the traversal time across a grid cell.

TMA can compute optimum paths that combine both on-road and off-road

mobility, and with weather conditions used to modify the grid cost factors. The

smallest grid size used is approximately 0.5 km. The author uses the concept of

a signal propagating from the starting point and uses the traversal time at each cell

in the array to determine the time at which the signal arrives at neighbouring cells.

A lot of these systems use the Continuous Dijkstra’s Algorithm for route planning

described by Mitchell in (Mitchell, 1999). In the simulation-based operational

training support system SBOTSS Zlocien (Najgebauer, 2004a) a dual model of the

terrain: (1) as regular network of terrain squares with a square size of 200mx200m,

(2) as road-railroad network, which is based on a digital map in VPF format, is

used. To find paths for units, modified shortest path algorithms (SPA) such as

Dijkstra’s, A*, geometric SPA are used. Geometric SPA supplements two

algorithms presented above (the hybrid shortest path algorithm is obtained) and it

is used in case the size of the network is large (default is 10000 nodes, but it is

a parameter set in a so-called calibrator of the simulation system (Antkiewicz et al.,

2006)). Modifications of mentioned algorithms deal with the following details:

(a) paths determination in different configurations - (a1) from point (region) to

point (region), (a2) visiting selected points (regions), (a3) omitting selected points

(regions, obstacles), (a4) inside or outside a selected region, (a5) off-roads only, (a6)

on-roads only, (a7) combined on- and off-roads and others; (b) if we do not set the

region inside where we want to find the path then the algorithm itself, iteratively

determines the rectangular region, which is based on a line linking the beginning

and end points (nodes) of movement, to minimize computational time; (c) if we

want to find an on-road path only, and there are no nodes of the road network

inside the intermediate squares, then the algorithm may optionally find crossroads

(nodes of the road network), which are nearest to squares inside that the path must

cross. Detailed description of the movement planning algorithms used in SBOTSS

Zlocien is presented in (Tarapata, 2004b; 2004c). Moreover, it is also presented in

chapter 6.1. A special type of system for movement planning is Allied Deployment

and Movement System (ADAMS) (Heal & Garnett, 2001), which has been

developed in support of multinational force movement planning. This system

is in wide use throughout NATO and nations for analysis, generation and

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

23

coordination of movement plans. The ADAMS provides the users with the

tools to plan and manage deployment operations.

Taking into account multiresolution terrain modelling this approach is also

used for battlefield modelling and simulation. For example, in the papers

(Tarapata, 2004b; 2010a; 2010c) a decomposition method, and its properties, which

decreases computational time for path searching in multiresolution graphs has

been presented. The goal of the method is not only computation time reduction

but, first of all, using it for multiresolution path planning (to apply similarity in

decision processes on a different command level and decomposing-merging

approach). The method differs from very effective representations of terrain using

quadtree (Kambhampati & Davis, 1986) because of two main reasons: (1) elements

of quadtree, which represent a terrain have irregular sizes, (2) in a majority of

applications quadtree represents only binary terrain with two types of region: open

(passable) and closed (impassable). Hence, this approach is very effective for

mobile robots, but it is not adequate, for example, to represent the battlefield

environment (Tarapata, 2003a).

Some models and algorithms for terrain-based movement planning are

considered in detail in chapter 3.

2.3. Terrain Model in the Zlocien System as an Example of Battlefield

Environment Model

The terrain (environment) model S0, which we use as a battlefield model in

the Zlocien system (Najgebauer, 2004a, 2004b) is based on the digital map in VPF

format. The model is twofold: (1) as a regular network Z1 of terrain squares, (2) as

a road-railroad network Z2 and it is defined as follows (Tarapata, 2004c; 2004d):

= 1 2() (), ()OS t Z t Z t (2.1)

The regular grid of squares Z1 (see Fig. 2.3b) divides terrain space into

squares with the same size (200m×200m) and each square is homogeneous from

the point of view of terrain characteristics (degree of slowing down velocity, ability

to camouflage, degree of visibility, etc.). This square size results from the fact that

the lowest level of modelled units in SBOTSS Zlocien is a platoon and 200m it is

approximately the width of the platoon front during attack. The Z1 model is used

to plan off-road (cross-country) movement e.g. during attack planning. In the Z2

road-railroad network (see Fig. 2.5) we have crossroads as network nodes and

section of the roads linking adjacent crossroads as network links (arcs, edges). This

model is used to plan fast on-road movement, e.g. during march (redeployment)

planning and simulation. Movement planning and simulation methods in Zlocien

system using Z1 and Z2 models are described in chapter 6.1.

2. Environmental Modelling for Knowledge-Based Decision Making and Simulation

24

Models Z1 and Z2 are integrated. This integration gives possibilities to plan

movement taking into account both models. It is possible, because each square of

terrain contains information about fragments of road inside this square. On the

other hand each fragment of road contains information on squares of terrain,

which they cross. Hence, the route for any object (unit) may consist of sections of

roads and squares of terrain. It is possible to get off the road (if it is impassable)

and start off-road movement (e.g. omit impassable section of road) and afterwards

returning to the road. Conversely, we can move off-roads (e.g. during attack),

access a section of road (e.g. any bridge to go across the river) and then return back

off-road (on the other riverside). The characteristics of both terrain models depend

on: time, terrain surface and vegetation, weather, the time of day and season of the

year, opponent and own destructions (e.g. destruction of the bridge, which is

element of road-railroad network) (see Table 2.1 and Table 2.2).

The formal definition of the regular network of terrain squares Z1 is as

follows (see Fig. 2.3b):

 = Ψ1 1 1() , ()Z t G t (2.2)

where G1 defines Berge's graph1 describing the squares network structure,

= Γ1 1 1,G W , 1W - set of graph’s nodes (terrain squares); 12:
11

W
W →Γ - function

describing for each nodes of the G set of adjacent (direct successors) nodes

(maximal 8 adjacent nodes); Ψ = Ψ ⋅ Ψ ⋅ Ψ ⋅ Ψ ⋅

11 1,0 1,1 1,2 1, () { (,), (,), (,),..., (,)}LWt t t t t - set of

functions defined on the graph’s nodes (depending on t).

One of the functions of Ψ1 ()t is the function of slowing down velocity

FSDV(n,…), ∈ 1n W , which describes slowing down velocity (as a real number

from [0,1]) inside the n-th square of the terrain,

 1: [0,1]FSDV W T Veh Meteo YearS DayS× × × × × → (2.3)

where: T – set of times, Veh – set of vehicle types, Veh ={Veh_Wheeled,

Veh_Wheeled-Caterpillar, Veh_Caterpillar}; Meteo – set of meteorological

conditions, YearS – set of the seasons of year, DayS – set of the times of day.

The function FSDV is used to calculate crossing time between two squares of

terrain. Other functions (as subset of)(
1

tΨ) described on the nodes (squares) of G1

and essential from the point of view of trafficability and movement are presented

in Table 2.1.

1 Berge's graph is such a directed graph which has at most one arc between each ordered

pairs of nodes. One of the formal definitions is presented in (Korzan, 1978).

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

25

Table 2.1. The most important functions described on the terrain square (node of G1)

Description of the function Definition of the function

Geographical coordinates of node (centre of square) 3

1
:FWSP W R→

Ability to camouflage in the square
1

: [0,1]FCam W T× →

Degree of terrain undulation in the square
1

: [0,1]FUnd W →

Subset of the node’s set of Z2 network, which are located inside

the square

2

1 2 1
: 2

W
FW OnW W →

 The formal definition of the road-railroad network Z2 is following (see Fig.

2.5):

ζ= Ψ2 2 2 2() , (), ()Z t G t t (2.4)

where G2 describes Berge's graph defining structure of road-railroad network,

=2 2 2,G W U , 2W - set of graph’s nodes (crossroads); ⊂ ×2 2 2U W W - set of graph

G2 arcs (sections of roads);
22 2,0 2,1 2,() { (,), (,),..., (,)}LWt t t tΨ = Ψ ⋅ Ψ ⋅ Ψ ⋅ - set of functions

defined on the graph’s G2 nodes (depending on t); () (){ }ζ ζ

=

= ⋅

2
2 2, 1,

,i i IG
t t - set of

functions defined on the graph’s G2 arcs (depending on t).

 Functions (as subset of Ψ2 ()t and ζ 2 ()t) are presented, which are essential

from the point of view of trafficability and movement, described on the nodes and

arcs of G2 in Table 2.2. One of the most important functions is slowing down

velocity function FSDV2(u,…), 2
Uu∈ which describes slowing down velocity (as

real number from [0,1]) on the u-th arc (section of road) of the graph:

22 : [0,1]FSDV U T Veh Meteo YearS DayS× × × × × → (2.5)

(a) (b)

Fig. 2.5. Road-railroad network Z2 (a) and its graph model G2 (b)

2. Environmental Modelling for Knowledge-Based Decision Making and Simulation

26

Table 2.2. The most important functions described on the crossroads and on part of the roads (G2)

Description of the function Definition of the function

Geographical coordinates of node (crossroad) 3

2
2 :FWSP W R→

Node from Z1, which contains node from Z2 2 1 2 1
:FW OnW W W→

Subset of set of the nodes of Z1 network, which contains the arc 1

2 1 2
: 2

W
FU OnW U →

Degree of terrain undulation on the arc
2

: [0,1]FUnd U →

Arc length
2

:FLen U R
+

→

For movement planning models in Zlocien system, described in chapter 6.1

and in (Tarapata, 2004b; 2004c), we construct some temporary network Sz:

{ }1 2 2 1 2 3, () (), () , ,z zS G t t t l l lζ= Ψ ∪ Ψ ∪ (2.6)

where: Gz – Berge's graph describing structure of the temporary network (Fig. 2.6),

,z z zG W U= (2.7)

Wz= W1∪W2 – set of graph’s Gz nodes, W1 defined in (2.2), W2 defined in (2.4);

1 2 3
z z zU W W U U U⊂ × = ∪ ∪ – set of graph’s Gz arcs, U2 described in (2.4) and

(){ }1 1 1 1, : ()U a b W W b a= ∈ × ∈Γ (2.8)

' ''
3 3 3U U U= ∪ (2.9)

(){ }

'
3 1 2 2 1 1, : () ()U a b W W FW OnW b a= ∈ × ∈ Γ (2.10)

() (){ }

''
3 2 1 1 2 1, :)U a b W W b FW OnW (a= ∈ × ∈ Γ (2.11)

l1 – function which describes crossing time by an arc:

 1 : {0}zl U R+

→ ∪ (2.12)

l2 – function describing geometrical length of an arc:

 2 : zl U R+

→ (2.13)

l3 – function describing ability to camouflage on an arc:

 3 : [0,1]zl U → (2.14)

 Let’s note that we determine values of l1, l2 and l3 in the moment T0, in which

we plan the movement for each arc (a,b)∈Uz. Therefore, they depend on time but

we omit it to simplify descriptions. Moreover, we accept following notations:

met(T0)∈Meteo – meteorological conditions on the arc (a,b) in the moment T0;

pr(T0)∈YearS – the season of the year inside the region in the moment T0;

pd(T0)∈DayS – the time of the day inside the region in the moment T0;

veh(p)∈Veh – type of the vehicle p.

Z. Tarapata − Models and Algorithms for Knowledge

Fig.

 We define l1 function as follows:

(1 (,)l a b

where: (,)d a b – geometric distance between nodes

(,) () () () () () ()d a b x a x b y a y b z a z b= − + − + −

x(w), y(w), z(w) – describe coordinates of node

(see Table 2.1) when w∈W

(,(,))slowdv id a b – maximal velocity of the unit

topographical conditions,

(

slowdv id a b v id FOP id a b

max()v id – maximal possible velocity of the unit

parameters of the vehicles belonging to

max() min ()v id v p

ZVeh(id) – set of vehicles belonging to the

vehicle p (resulting from

(,(,))FOP id a b – slowing down velocity function for the

− Models and Algorithms for Knowledge-Based Decision Support and Simulation..

Fig. 2.6. Structure Gz of temporary network Sz

unction as follows:

)

(,)
, when (,(,)) 0

(,(,))(,)

, otherwise

slowd

slowd

d a b
v id a b

v id a bl a b




= 


∞

geometric distance between nodes a, b,

() () ()

3 3 3
3(,) () () () () () ()d a b x a x b y a y b z a z b= − + − + −

describe coordinates of node w (calculated using functions

W1 or FWSP2 (see Table 2.2) when w∈W

maximal velocity of the unit id on the arc (a,b) taking into account

topographical conditions,

)

max,(,) () (,(,))v id a b v id FOP id a b= ⋅

maximal possible velocity of the unit id resulting from technical

parameters of the vehicles belonging to this unit,

()
() min ()tech

p ZVeh id
v id v p

∈

=

set of vehicles belonging to the id unit, vtech(p) – maximal velocity of the

(resulting from its technical parameters),

slowing down velocity function for the id unit on the arc

and Simulation... 27

, when (,(,)) 0v id a b ≠

 (2.15)

3 3 3
(,) () () () () () ()d a b x a x b y a y b z a z b (2.16)

(calculated using functions FWSP

W2),

taking into account

 (2.17)

resulting from technical

 (2.18)

maximal velocity of the

unit on the arc (a,b),

2. Environmental Modelling for Knowledge-Based Decision Making and Simulation

28

()

0 0 0 0
()

2

() ()

1

,(,)

2((,), , (), (), (), ())

, when ,
()

(, , (), ...) (, , (), ...)

, when ,
2 ()

(, , (), ...)

p ZVeh id

p ZVeh id p ZPoj id

p ZVeh

FOP id a b

FSDV a b T veh p met T pr T pd T

a b W
ZVeh id

FSDV a veh p FSDV b veh p

a b W
ZVeh id

FSDV a veh p

∈

∈ ∈

∈

=

∈

+

∈

=

∑

∑ ∑i i

i

()

2 1
()

1 2

2 1
()

()

2 1

2 ()

((), , (), , ,)

, when ,
2 ()

((), , (), , ,)

2 ()

(, , (), , ,)

, when ,
2 ()

id

p ZVeh id

p ZVeh id

p ZVeh id

ZVeh id

FSDV FW OnW b veh p

a W b W
ZVeh id

FSDV FW OnW a veh p

ZVeh id

FSDV b veh p

a W b W
ZVeh id

∈

∈

∈






+



+ ∈ ∈

+

+ ∈ ∈

∑

∑

∑

∑

i i i i

i i i i

i i i i























(2.19)

Function l2 is defined as follows:

2

(,), when
((,))

, otherwise

zd a b (a,b) U
l a b

 ∈

= 
∞

 (2.20)

Function l3 is defined as follows:

0 0
1

2 1 0 0
2 1

3

2 00
1 2

2 0 2 0
2

, when
2

()
, when

2 2((,))
()

, when
2 2

() ()
, when ,

2 2

FCam(a,T) FCam(b,T)
a,b W

FCam(FW OnW a ,T) FCam(b,T)
a W ,b W

l a b
FCam(FW OnW b ,T)FCam(a,T)

a W ,b W

FCam(FW OnW a ,T) FCam(FW OnW b ,T)
a b W

+

∈

+ ∈ ∈

=

+ ∈ ∈

+ ∈













(2.21)

We use these functions in chapters 5.3 and 6.1. Similar terrain model is used in the

SATDS – Guru (Antkiewicz et al., 2009c; Najgebauer, 2008a).

In the Zlocien system some terrain classification method

(Najgebauer & Tarapata, 2004d) for decision automata for an attack and defence on

the tactical level which is based on the defined terrain model is also used. This

method is one of the part of the first stage of automata described in (Antkiewicz et

al., 2003; 2004a; 2004b; Najgebauer et al., 2007b) and in chapter 5.2, and it is based

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

29

on presented model of the terrain. The idea of the method is to estimate terrain

region in which own and opposite units will operate to obtain one of the four of

kinds of the terrain: go, slow go, no go, no move. The first kind of the terrain (go) is

excellent for movement (e.g. plain terrain), the second one (slow go) is good for

movement (e.g. soft-hilly terrain), the third kind of the terrain (no go) is poor for

movement (e.g. hard-hilly terrain or mountainous terrain) and the last kind of the

terrain (no move) describes impassable terrain (e.g. lakes, seas, high mountains).

The region (action strip) in which own and opposite units will operate is divided

into rectangular or trapezoidal subregions (each of these for subordinate unit).

Inside each of the subregions and between adjacent subregions we determine

shortest paths from the start to the end of the region (the start of the region is

taking from the side of own units and the end of the region is taking from the side

of opposite units). These paths are determined taking into considerations all

characteristics having influence on movement in the subregions and between

adjacent subregions (terrain topography, weather, the time of the day, season of

the year). The movement planning algorithms use modifications of shortest paths

algorithms (SPA) such as: Dijkstra’s SPA, Johnson’s SPA in thin networks, A* SPA,

geometric SPA (see chapter 6.1.2). After this step we obtain square matrix with

dimensions: number_of_subregions×number_of_subregions which elements , ,k l js ∈[0,1]

equals relation between time on the shortest path from start of the region l to end

of the region j and between minimal travel time from start of the region l to end of

the region j inside the subregion k under ideal environmental conditions.

Estimation kS of the k-th region equals mean value from among , ,k l js . The region of

the terrain is classified as go, slow go, no go, no move if estimation kS of the region is

not greater than some critical value (set as parameters of simulator to calibrate

terrain classification, (Antkiewicz et al., 2006)). The kind of the terrain determined

using described method is component of classification vector which define the

decision situation in automata (Antkiewicz et al., 2003; 2004a; 2004b). On the basis

of this vector the variants of decisions are generated and the optimal decision is

selected.

3. Models and Algorithms for Movement Planning

3.1. Introduction

Movement (paths, routing, motion) planning is an essential element in many

applications (LaValle, 2006): transportation, computer networks, mobile robots, car

navigation, virtual agents in computer games, etc. From the point of view of

military application, explained in this monograph, it is very interesting. Object

movement is an essential element of combat actions and it is related to manoeuvre

planning of military detachments on the battlefield during battle as well as

preparing for it. This process is very important from the point of view of

simulating complex processes in military systems. It may have an effect on

accuracy, adequateness, effectiveness and other characteristics of these systems.

Redeployment planning and simulation of military objects is a basic problem

especially in combat simulators or CGFs. As an inseparable part of CGF, modules

for route planning based on the real-terrain models are used. They have

submodules to generate digital terrain and for route planning they use processed

terrain information. For example, in ModSAF (Modular Semi-Automated Forces) in

module "SAFsim", which simulates the entities, units, and environmental processes

the route planning component is located (Longtin & Megherbi, 1995). Other

terrain-based path planning modules have been described in chapter 2.2.

Many route planners in the literature are based on the off-line path planning

algorithms: a path for the object is determined before its movement. These

algorithms are divided into two groups (Zhan & Noon, 2000): label setting

algorithms and label correcting algorithms. The following are exemplary algorithms of

the label setting approach: modified Dijkstra’s algorithm (Dijkstra, 1959) with

a priority queue represented by d-ary heap (O(AlogdV), where V – number of

nodes of a graph, A – number of edges (or arcs) of a graph, { }max 2, /d A V=   )

proposed in (Tarjan, 1983), with priority queue represented by Fibonacci heap

(O(A+V logV)) proposed in (Fredman & Tarjan, 1987), with buckets (Zhan & Noon,

1998), symmetric Dijkstra's algorithm (Zhao, 1997), A* algorithm (average time

proportional to O(V V⋅)) (Korf, 1999). Very interesting group are geometric path

planning algorithms (Mitchell, 1999) or its variants (Korf, 1999; Logan, 1997a;

Logan & Sloman, 1997b; Rajput & Karr, 1994; Tarapata, 1999a; 2001; 2003a; 2004a;

Undeger et al., 2001). As label correcting algorithms we can apply: Bellmann-Ford’s

algorithm with complexity O(VA), Pallottino algorithm (Pallottino & Scutella,

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

31

1998), PDM algorithm or others (Gabow-Tarjan’s algorithm (Gabow & Tarjan, 1989)

with complexity O(log()VA VW where W is the largest absolute weight of edges)

or the algorithm presented in (Ahuja et al., 1988) (O(logA V W+))).

For finding all-pairs shortest paths we can apply V times (for each node) the

modified Dijkstra’s algorithm (O(VAlogdV)), Johnson’s algorithm in sparse

networks (Johnson, 1977) (O(V2logV+VA)) or algorithms in DAGs (directed acyclic

graphs) e.g. the Bellman algorithm (O(V+A)). For example, A* has been used in

a number of Computer Generated Forces systems as the basis of their component

planning, to plan road routes (Campbell et al., 1995), to avoid moving obstacles

(Karr et al., 1995), to avoid static obstacles (Rajput & Karr, 1994) and to plan

concealed routes (Longtin & Megherbi, 1995). Moreover, the multicriteria approach

to the path determined in CGF systems is often used. Some results of selected

multicriteria paths problem and analysis of the possibility to use them in CGF

systems are described, e.g. in (Tarapata, 2007d). A very extensive discussion

related to geometric shortest path planning algorithms was presented by Mitchell

in (Mitchell, 1999) (references consist of 393 papers and handbooks). The geometric

shortest path problem is defined as follows: given a collection of obstacles, find an

Euclidean shortest obstacle-avoiding path between two given points. Mitchell

considers the following problems: geodesic paths in a simple polygon; paths in

a polygonal domain (searching the visibility graph, continuous Dijkstra’s

algorithm); shortest paths in other metrics (Lp metric, link distance, weighted

region metric, minimum-time paths, curvature-constrained shortest paths, optimal

motion of non-point robots, multiple criteria optimal paths, sailor’s problem,

maximum concealment path problem, minimum total turn problem, fuel-

consuming problem, shortest paths problem in an arrangement); on-line

algorithms and navigation without map; shortest paths in higher dimensions.

The basic idea of the on-line path planning algorithms (Korf, 1999), in general, is

that the object is moved step-by-step from cell to cell using a heuristic method.

This approach is borrowed from robots motion planning (Behnke, 2004;

Kambhampati & Davis, 1986; LaValle, 2006; Logan & Sloman, 1997; Undeger et al.,

2001). The decision about the next move (its direction, speed, etc.) depends on the

current location of the object and environment status. Examples of on-line path

planning algorithms (Korf, 1999): RTA* (Real-Time A*), LRTA* (Learning RTA*),

RTEF (Real-Time Edge Follows), HLRTA*, eFALCONS. For example, the idea of RTEF

algorithm (Undeger et al., 2001) is to let the object eliminate closed directions (the

directions that cannot reach the target point) in order to decide on which way to go

(open directions). For instance, if the object has a chance to realize that moving

north and east will not let him reach the goal state, then it will prefer to go south or

west. RTEF finds out these open and closed directions by decreasing the number of

choices the object has.

3. Models and Algorithms for Movement Planning

32

However, the on-line path planning approach has one basic disadvantage: in this

approach using a few criterions simultaneously to find an optimal (or acceptable)

path is difficult and it is rather impossible to estimate, the moment of reaching the

destination in advance. Moreover, it does not guarantee finding optimal solutions

and even suboptimal ones may significantly differ from acceptable solutions.

Organization of this chapter is as follows: chapter 3.2 contains decomposition

and a multiresolution approach to path planning (based on the papers (Tarapata,

2004a; 2010a; 2010c)), in chapter 3.3 models and algorithms for multiobjective

(multicriteria) paths planning have been described (based on the papers (Tarapata

1999a; 2000e; 2005c; 2007d)), chapter 3.4 contains analysis of specific disjoint paths

planning models and algorithms (based on the papers (Tarapata 2006b; 2008e;

2010g; 2011d)). Presented applications and examples of methods being described

concern military applications but these methods are interdisciplinary.

3.2. Decomposition and Multiresolution Paths Planning

3.2.1. Description of the Problem

Multiresolution paths (paths in multiresoultion environment model, see

chapter 2.1) are very interesting from many applications point of view (mobile

robots (Ahuja et al., 1988; Kambhampati & Davis, 1986; LaValle, 2006), battlefield

simulation (Tarapata, 2003a), Computer Generated Forces (Petty, 1995),

transportation or navigation (Chou et al., 1998). These are fields, which describe

either the size of the environment or environment complexity (3D terrain). For

example, in a battlefield decision support and simulation systems, planning

models of movement based on a multiresolution environment (see definition in

chapter 2.1) are used. This is the nature of a hierarchical structure of military units

and methods of their behaviours on a simulated battlefield. For a company level of

units, greater precision of terrain (environment) model is required than, for

example, the brigade level (see details in chapter 3.2.6).

The multiresolution paths problem is strongly connected with the problem of

finding the shortest paths in large-scale networks. There are two main approaches

to the shortest paths problem in large-scale networks: (a) to decompose a problem

or environment (network, graph) in which we plan into smaller problems and then

solve subproblems (Ahuja et al., 1988; Kambhampati & Davis, 1986; Pai & Reissell,

1998); (b) to apply on-line algorithms which find and "merge" path cell-by-cell

(Didjev et al., 1995; Korf, 1999; Tarapata, 2003a). The first group of approaches is

called multiresolution methods. As local algorithms inside all of these methods,

algorithms described in chapter 3.2.1 are used. For example, authors of

(Kambhampati & Davis, 1986) present a method based on cell decomposition and

partitioning space into a quadtree and then use a staged search (similar to A*

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

33

algorithm) to exploit the hierarchy. The goal of the approaches presented in (Pai &

Reissell, 1998) is to navigate a robot without violating terrain dependent

constraints decomposing the terrain with wavelet decomposition. Authors of the

paper (Chou et al., 1998) present some Hierarchical Algorithm (HA), which is

designed to look for paths in large networks representing road networks.

Subchapter 3.2.3 presents a decomposition method (DSP – decomposition

shortest paths) and its properties, which decrease computational time of path

searching in multiresolution and large graphs. The goal of the method is not only

computation time reduction but, most of all, using it for multiresolution path

planning. Presented in chapter 3.2.6 is the method of how to use it for

multiresolution battlefield modelling and paths planning.

3.2.2. Definitions and Notations

 Let graph ,G GG V A= be given (see Fig. 3.1b) as a representation of an

example of terrain squares (see Fig. 3.1a), where VG describes a set of nodes

(squares of terrain), V= GV , AG describes a set of arcs,

{ }, : square is adjacent to square G G GA x y V V x y⊂ ⊂ × , A= GA .

For each arc , Gx y A∈ we have cost c(x,y) value as the crossing time (c(x,x)=0,

c(x,y)=+∞ when , Gx y A∉). The problem is to find the shortest path from the

source node s to the destination node t in G with the assumption that G is large in

size and, simultaneously, to prepare the data structure (a graph) for

multiresolution path planning. The idea of the approach is to merge geographically

adjacent small squares (nodes belonging to V) into bigger squares (called b-nodes,

see Fig. 3.1c) and to build b-graph G* (graph based on the b-nodes, see Fig. 3.1d)

using a specific transformation. This transformation is based on the assumption

that we set an arc (b-arc) between two b-nodes * *,G Gx V y V⊂ ⊂ when two such

nodes as ∈ ∈

* *,x x y y exist and that , Gx y A∈ (x and y are called "border" nodes).

Formal definition of the graph G* is as follows: * * *,G GG V A= ,

* * * *
1 2{ , , ..., }G nV x x x= − set of b-nodes, =

* ,GV n

=

* ,GA m

*
1 2{ , ,..., }

ii i i im Gx x x x V= ⊂ and

each *
ix , 1,i n= generates subgraph of G,

{ }
* * * * *

*, *
, : ,G G G G

x x y y
A x y V V x y A

∈ ∈

= ⊂ × ∃ ∈ (3.1)

Let us note that parameter dn (length of the b-node side, see Fig. 3.1c) may be used

instead of parameter n for creating graph G* and it may be computed as follows:

/dn V n= when ()
2mod 0V dn = .

3. Models and Algorithms for Movement Planning

34

Fig. 3.1. Principles of G* creating. Regions (squares) with black colour are impassable.

a) Terrain space divided into a regular-size grid; b) Grid graph as a representation of terrain

squares from a), only north-east-south-west arcs are permitted; c) Merging geographically adjacent

small squares from b) into n=16 b-nodes (big squares); d) b-graph G* for squares merging from c)

with marked shortest s-t path in G* (an edge represent two arcs with opposite directions)

The cost of the b-arc * * *, Gx y A∈ is set as *min * *(,)c x y and *max * *(,)c x y : *min * *(,)c x y

is represented by the cost vector of the shortest of the shortest paths from any node

belonging to x* to any node belonging to y* for each predecessor z* of x*. This is

a vector, because the cost from x* to y* depends on the node, from which we

achieve x* (therefore, for each predecessor of x* we have a cost value, see Fig. 3.2).

This cost is calculated inside the subgraph built on the nodes belonging to x*, y*

and z*. Cost *max * *(,)c x y is represented by the cost vector of the longest of the

shortest paths from any node belonging to x* to any node belonging to y* for each

predecessor z* of x*.

For further discussion we will use the following notations:
* *(,)W x y − subset of nodes belonging to x*, which are adjacent ("border") to

any node of y*, { }
* * *

*
(,) : , G

y y
W x y x x x y A

∈

= ∈ ∃ ∈ ,

D(x,y) – set of paths between nodes x and y in graph G;

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

35

0 1 ((,))(,) (, ,...,)l d x yd x y x x x x y= = = − element of D(x,y), 1
0, ((,)) 1

,i i G
i l d x y

x x A
+

= −

∀ ∈ ,

((,)) 1

1
0

((,)) (,)
l d x y

i i
i

L d x y c x x
−

+

=

= ∑ − cost of path d(x,y) from x to y;

min * * * *((,), (,))D W x z W y v − set of shortest paths in G between nodes

belonging to * *(,)W x z and * *(,)W y v :

()

min * * * *

min * * * *
min

(,) (,)

(,) (,) : (,), (,),
(,), (,)

 ((,)) min ((,))
d x y D x y

d x y D x y x W x z y W y v
D W x z W y v

L d x y L d x y
∈

 ∈ ∈ ∈ 
=  

=  
*min * *(,)c x y − minimal of minimal cost vector for arc * * *, Gx y A∈ from x* to y*,

{ }

*min * * *min * *
* * * *: *, * *

(,) (,)z z v V v x A
c x y c x y

∈ ∈ ∈

= , *min * *
* (,)zc x y − minimal of minimal cost

from x* to y* when the predecessor of x* is z*,

() ()

min min

*min * *
*

(,) (*, *), (*, *) (,) (*, *), (*, *)
(,) min ((,)) min ((,))z

d D W x z W x y d D W x y W y x
c x y L d L d

⋅ ⋅ ∈ ⋅ ⋅ ∈

= ⋅ ⋅ + ⋅ ⋅ (3.2)

*max * *(,)c x y
 − maximal of minimal cost vector for arc * * *, Gx y A∈ from x* to

y*,
{ }

*max * * *max * *
* * * *: *, * *

(,) (,)z z v V v x A
c x y c x y

∈ ∈ ∈

= , *max * *
* (,)zc x y

 − maximal of minimal cost

for arc * * *, Gx y A∈ when the predecessor of x* is z*,

() ()

min min

*max * *
*

(,) (*, *), (*, *) (,) (*, *), (*, *)
(,) max ((,)) max ((,))z

d D W x z W x y d D W x y W y x
c x y L d L d

⋅ ⋅ ∈ ⋅ ⋅ ∈

= ⋅ ⋅ + ⋅ ⋅ (3.3)

D*(x*,y*) − set of paths between nodes x* and y* in graph G*,

()
* * * * * * * * *

0 1 2 *(*(*, *))(,) , , , ..., l d x yd x y x x x x x y= = =

− element of D*(x*,y*) and

* * * *

* * *
1

0, ((,)) 1

,i i G
i l d x y

x x A
+

= −

∀ ∈ ,

*min * * *((,))L d x y
 − cost of path d*(x*,y*) from x* to y*, which is based on

*min * *(,)c x y ,

* * * *

* *
0 1

((,)) 1
*min * * * min * * min * *

0 1 1()
1

((,)) (,) (,)
i

l d x y

i ip x x
i

L d x y c x x c x x
−

−

+

=

= + ∑ (3.4)

where *
0()p x denotes the predecessor of *

0x in G* representing the "direction", from

which we start path planning in *
0x (we use this interpretation, for example when

* * *, Gx y A∈ and * *, x y represent internal nodes of path d*(v*,z*); then

*

*min * * * min * *

()
((,)) (,)

p x
L d x y c x y=

and p(x*) denotes the predecessor x* on path d*(v*,z*)). If

the information about *
0()p x is unimportant then * *

0 1()p x x= . Let us note that the

3. Models and Algorithms for Movement Planning

36

interpretation of *
0()p x allows us to write (3.4) as the sum of length of parts of path

* * *(,)d x y as follows:

* * * * * * * *

*

((,)) 1 ((,)) 1
*min * * * *min * * * min * *

1 1()
0 0

*
1*

*
1

((,)) ((,)) (,)

, 0
()

, 0

i

l d x y l d x y

i i i ip x
i i

i

i

L d x y L d x x c x x

x i
p x

x i

− −

+ +

= =

−

= =

 >
= 

=

∑ ∑
 (3.5)

Without the presented interpretation of *
0()p x the calculation of the length of

* * *(,)d x y as the sum of the length of its parts like in (3.5) would be impossible. We

can define *max * * *((,))L d x y as the cost of path d*(x*,y*) from x* to y*, which is based

on *max * *(,)c x y , analogically to (3.4):

* * * *

* *
0 1

((,)) 1
*max * * * max * * max * *

0 1 1()
1

((,)) (,) (,)
i

l d x y

i ip x x
i

L d x y c x x c x x
−

−

+

=

= + ∑ (3.6)

Finally, we denote with *max * *(,)d x y the shortest path in G* from x* to y* with

*max * *(,)c x y cost function and with *min * *(,)d x y the shortest path in G* from x* to y*

with *min * *(,)c x y cost function. For *max * *(,)d x y and *min * *(,)d x y following

conditions are satisfied:

* *

*max *max * max *

(,) (,)
((,)) min ((,))

d D
L d L d

⋅ ⋅ ∈ ⋅ ⋅

⋅ ⋅ = ⋅ ⋅ ,
* *

*min *min *min *

(,) (,)
((,)) min ((,))

d D
L d L d

⋅ ⋅ ∈ ⋅ ⋅

⋅ ⋅ = ⋅ ⋅ ,

where D*(⋅,⋅) describes the set of paths in G* between pairs of b-nodes.

Fig. 3.2. The interpretation and calculation method of *min
(,)Ec A B and *max

(,)Ec A B as components of

*min
(,)c A B and *max

(,)c A B ; calculation of *min
(,)Bc A B and *max

(,)Bc A B in accordance. As "border" nodes

of A to B we have W(A,B)={3,4}

A

B

9

11

10

12

1

3

2

4

7

4 8

2

5

7

6

8

1

5 9

3

5 7

E

*min *min *min(,) (,), (,)E Bc A B c A B c A B=

*max *max *max(,) (,), (,)E Bc A B c A B c A B=

W(A,E)={1,3}; W(A,B)={3,4}; W(B,A)={5,6};

()

()

min

min

*min

(,) (,), (,)

(,) (,), (,)

(,) min ((,))

 min ((,)) 0 5 5

E
d D W A E W A B

d D W A B W B A

c A B L d

L d

⋅ ⋅ ∈

⋅ ⋅ ∈

= ⋅ ⋅ +

+ ⋅ ⋅ = + =

()

()

min

min

*max

(,) (,), (,)

(,) (,), (,)

(,) max ((,))

 max ((,)) 6 7 13

E
d D W A E W A B

d D W A B W B A

c A B L d

L d

⋅ ⋅ ∈

⋅ ⋅ ∈

= ⋅ ⋅ +

+ ⋅ ⋅ = + =

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

37

3.2.3. Decomposition Shortest Paths Algorithm (DSP)

3.2.3.1. The idea of the DSP algorithm

The branch-and-bound (decomposition) algorithm for shortest paths finding

(DSP algorithm) consists of two main phases: (1) constructing graph G* (steps 1-3);

(2) finding the path from source s to destination t (steps 4-5). It uses Dijkstra’s

algorithm with k-ary heaps ({ }max 2, /k A V=   ) (because graph G is sparse and

k-ary heap is very effective (Tarjan, 1983)) and may be presented in 5 steps:

1. merge nodes from graph G (Fig. 3.1b) into n big nodes (b-nodes) as subgraphs

of G (Fig. 3.1c) (n is the parameter of the algorithm);

2. set each of the subgraphs obtained in step 1 as b-nodes and set b-arcs in this

graph as described by (3.1) obtaining graph G* (Fig. 3.1d);

3. (a) for each * *
Gx V∈

 and for each * *
Gz V∈

 such that * * *, Gx z A∈ to determine the

shortest path trees (SPTs) inside x* for each * *(,)x W x z∈ as a source node;

(b) calculate costs *min(,)c ⋅ ⋅ and *max(,)c ⋅ ⋅ for each arc of G* using (3.2)-(3.3);

4. find the shortest path * min * *(,)s td x x and *max * *(,)s td x x in G* with cost functions

*min(,)c ⋅ ⋅ and *max(,)c ⋅ ⋅ (lower and upper restriction on length of the path from s

to t) between such pairs * *,s tx x of b-nodes that * *, s ts x t x∈ ∈ (see Fig. 3.1d);

5. find shortest path from s to t (s-t path) inside subgraph generated by nodes of G

belonging to b-nodes of *min * *(,)s td x x (*max * *(,)s td x x):

a) if * *
s tx x= then to find the shortest s-t path inside the subgraph of G generated

by nodes belonging to * *
s tx x= (use paths calculated in step 3a);

b) otherwise, if * *
s tx x≠ , then s-t path may be found constructing the DAG with

arcs directed from s to subset * * *
0 1(,)sW x x x= , then from * * *

0 1(,)sW x x x= to

* *
1 0(,)W x x , then from * *

1 0(,)W x x to * *
1 2(,)W x x etc. and lastly − from

* * * * * * * *

* *

((,)) ((,)) 1
(,)

s t s tl d x x l d x x
W x x

−

 to t (Fig. 3.3). The arc cost in DAG, is between nodes x

and y, and the length of the shortest path is calculated in step 3a.

. . . .
s

t

Fig. 3.3. Constructing DAG for the last step of the DSP algorithm. Firstly, arcs link s with nodes

inside *

sx bordering on *

1
x , then link previous nodes with nodes of *

1
x bordering on *

sx , etc.)

3. Models and Algorithms for Movement Planning

38

Fig. 3.4. An example of the path found in the DSP algorithm

An example of the path found by the DSP algorithm is presented in Fig. 3.4.

Base mesh of nodes (from graph G) is drawn using the smallest square scale.
B-nodes of graph G* are drawn using the smallest gray circles (single b-node
consist of 4x4 nodes from G), big gray circles denote path in G and big black circles

− path in G*.

3.2.3.2. Properties of the DSP algorithm

The DSP algorithm has some interesting properties. Theorem 3.1 shows lower

and upper restriction on the length of the shortest path in G using the DSP

algorithm. Theorem 3.2 shows the time and space complexity of the DSP

algorithm.

Theorem 3.1

Let * *
1'(, (,))sL s W x x denote the length of the longest of the shortest paths from s to any node

of * *
1(,)sW x x and *

1x denote the direct successor of *
sx on the path from *

sx to *
tx . For each

s, t∈VG and * * *,s t Gx x V∈ , * *
s tx x≠ such that * *, s ts x t x∈ ∈ the following formula is fulfilled:

 *max *max * * * * min *min *min * *
1((,)) '(, (,)) ((,)) ((,))s t s s tL d x x L s W x x L d s t L d x x+ ≥ ≥ (3.7)

Proof is presented in Appendix 3.A.1. Conclusions resulting from Theorem

3.1:

• if path from s to t exists in the G graph then path from *
sx to *

tx exists in the G*

graph and the DSP algorithm will find it;

• if G=G* then the lower restriction equals the upper restriction (the DSP

algorithm gives an optimal solution); otherwise, length min((,))L d s t of the

shortest s-t path is restricted by the left and the right side of the inequality (3.7).

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

39

Theorem 3.2

Let digraph G=(VG,AG), s,t∈VG, +

→: Gc A R and cardinal n representing the number of

b-nodes in G* be given. Then the total time of the DSP algorithm (for preparing G* and

finding shortest s-t path) is equal

()
3 / log (/) logk kO V n V n n n+ (3.8)

and the space ()
3 /O V n A V+ + , where { }max 2, /k A V=    .

Proof:

We must determine the complexity of each step of the algorithm.

Step 1. It can be done in O(V) time;

Step 2. Each b-node has at most /V n   nodes and ()' 4 / 1N V n = − 

"border" nodes. For each of the "border" nodes we must check at most 4 nodes of

its neighbours to set the arc in G*, we have to repeat it n times for each b-node, thus

it requires time ()/O n V n ;

Step 3a. For a single b-node we have ()' 4 / 1N V n = − 
 border nodes and for

each of them we have to determine the shortest paths tree using Dijkstra’s

algorithm with k-ary heap, { } { }max 2, / max 2, 4 / 4k A V V V= ≈ =       , thus for

a single b-node it takes time () ()4 / 1 (/) log (/)kV n O V n V n  − ⋅ ⋅ 
. We calculate it n

times and obtain a complexity of this step as follows: ()
3 / log (/)kO V n V n ;

Step 3b. For a single b-node we have two cost vectors *min(,)c ⋅ ⋅ , *max(,)c ⋅ ⋅ each of

them having at most 4 components. Calculation of each component takes time

proportional to 2 / /V n V n       , thus the total time is proportional to

8 2 /n V n⋅   = O(V);

Step 4. G* has n nodes and at most 4n arcs, thus calculation of the shortest

path in G* using Dijkstra’s algorithm with k-ary heap takes time ()logkO n n ,

{ }max 2, 4 / 4k n n= =   ;

Step 5. In the worst case * * *(,)s td x x may have n b-nodes. By building DAG we

can use only 2 /V n   nodes and ()

2

/ /V n V n=       arcs inside each b-node and

()

2

/ /V n V n=       arcs between b-nodes (Fig. 3.3), thus number of arcs in the

worst case is equal 2 /n V n   . Using Bellman’s algorithm (Bellman, 1958) for the

shortest path in DAGs complexity is ()/O n V n V+ .

3. Models and Algorithms for Movement Planning

40

Let us note the 3rd step is a "bottleneck" of the algorithm (if n→1 then

3 3/ log (/) logk kV n V n V V→) and 4th step (if n→V then log logk kn n V V→).

Hence, the total time complexity of the DSP is ()
3 / log (/) logk kO V n V n n n+ .

Space required is determined by step 3a; SPT for a single source node inside

each b-node contains at most /V n   nodes (this is the number of nodes inside

a single b-node), inside each b-node we determine SPT ()4 / 1V n  −  times (for

each border nodes as the root of SPT) and we have n b-nodes, hence it requires

space proportional to 3(/)O V n . Moreover we need space for graph G (O(A+V))

and G* (O(4n+n)), hence it requires O(A+V) space. Thus the total space required by

the DSP algorithm is 3(/)O V n A V+ + .

♦

3.2.4. Experimental Analysis of the DSP Algorithm

To examine the DSP algorithm we have used two models of the mesh S

network with dimension 200x200 nodes and a structure similar to the one from

Fig. 3.1b (only north-south-north, east-west-east arcs are permitted for each node,

hence maximal number of arcs between two nodes is equal 4),

(Tarapata & Godlewski, 2011c): S1 − random arcs from network S have been

cancelled and for each of the arc the random cost from the range []1, 4 has been set

(after all the network has 119574 arcs); S2 − all possible arcs between nodes have

been conducted and for each of the arc random cost from the range []1, 4 has been

set (after all, network have had 159200 arcs). Exactly 500 paths for randomly

generated s-t pairs using the DSP and A* algorithms have been determined.

Results for S1 are presented in Table 3.1 and for S2 − in Table 3.2.

Table 3.1. Experimental computation time and accuracy of the DSP algorithm for the S1 network

dn Number
of b-nodes

(n)

Number of
b-arcs
(m)

G*
generation

time [s]

Time of DSP
[s]

Time of A*
[s]

Error
[%]

cmin cmax cmin cmax cmin cmax
1 39 843 119 574 3.95 107.12 106.01 38.74 36.48 0 0

2 12 978 43 024 1.93 30.31 32.14 34.49 36.69 6.44 12.21

3 6 383 22 050 1.66 14.23 14.09 32.97 33.44 12.12 14.65

4 3 791 13 202 1.39 9.06 8.32 34.32 31.67 16.75 14.88

5 2 519 8 748 1.50 6.05 5.57 33.54 32.38 20.98 14.11

10 748 2 384 2.66 2.90 2.15 32.00 33.40 25.22 9.77

20 241 676 4.48 2.75 1.7 35.51 31.18 21.09 8.39

50 60 140 10.65 7.16 5.52 32.64 33.00 15.46 4.41

100 20 40 16.93 17.93 18.13 32.44 32.95 0.56 0.61

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

41

Table 3.2. Experimental computation time and accuracy of DSP algorithm for the S2 network

dn Number
of b-nodes

(n)

Number
of b-arcs

(m)

G*
generation

time [s]

Time of DSP
[s]

Time of A*
[s]

Error
[%]

cmin cmax cmin cmax cmin cmax
1 40 000 159 200 4.98 108.11 107.46 33.12 35.83 0 0

2 10 000 39 600 1.89 25.92 26.08 37.17 35.19 12.68 9.85

3 4 489 17 688 1.69 11.43 10.85 37.95 38.6 25.99 9.59

4 2 500 9 800 1.8 6.62 6.43 36.18 36.77 27.86 7.75

5 1 600 6 240 1.91 4.49 4.17 32.13 34.21 25.56 6.88

10 400 1 520 3.38 3.15 2.04 37.72 32.82 19.99 5.45

20 100 360 6.2 4.11 2.71 36.64 38.39 16.5 4.47

50 16 48 14.74 9.59 7.43 36.93 34.38 18.32 2.5

100 4 8 24.92 19.03 19.32 33.85 32.72 4.38 0.54

Columns in Table 3.1 and Table 3.2 contain (from the left): length of the

b-node side (see Fig. 3.1c for an interpretation), number of b-nodes, number of

b-arcs, generation time of G* (total time for steps 1-3 of the DSP algorithm), total

time of finding 500 paths by the DSP algorithm (total time for the steps 4-5 of the

DSP algorithm, separately for cmin and cmax), total time of finding 500 paths with the

A* algorithm (separately for cmin and cmax), Error=average absolute (in percent)

difference between path lengths obtained from the DSP and optimal path lengths

obtained from A* (separately for cmin and cmax). Results show that parameter n have

a great impact on effectiveness and accuracy of the DSP algorithm. Both, extreme

large and extreme small values of n, cause the deterioration of the DSP algorithm

effectiveness and accuracy. Let us observe that for n=1 error of the algorithm is

equal zero, but the computation time is significant greater than for A*. It results

from the idea of the algorithm (G* has a single b-node and only step 5th is

realized). From the analysis results, that the DSP is more accurate for cmax than for

cmin. This property is described in (Tarapata & Godlewski, 2011c; Godlewski, 2010).

 Because the most complex steps of the algorithm (steps 1-3, "bottleneck") are

done only one time (we build the b-graph only one time – initial pre-processing)

then if we compute a single-pair of the shortest path many times it allows us to

amortize time of the "bottleneck". In Fig. 3.5 we present graphs of calculation time

(represented by the number of dominating operations) for finding M shortest paths

using the DSP algorithm and the Dijkstra’s algorithm between random pairs of

nodes. It is easy to observe that the greater the value of n (with the same value of

V) the smaller the number of shortest paths calculation to obtain a shorter time for

the DSP algorithm than for the Dijkstra’s algorithm. For example, to obtain the

same calculation time for the DSP and the Dijkstra’s algorithm for V=1024, n=4 we

must find M*=17 shortest paths (for M<17 the Dijkstra’s algorithm is faster than

DSP, otherwise the DSP algorithm is faster) and for V=1024, n=64 we must find

only M*=3 shortest paths (for M<3 the Dijkstra’s algorithm is faster than the DSP,

otherwise the DSP algorithm is faster). Taking this approach to the results given in

3. Models and Algorithms for Movement Planning

42

Table 3.1 for dn=5 we obtain the following data (for cmax): the time generation of G*

is equal TG*=1.5 [s], computation times of finding 500 paths is equal 32.38 [s] for A*

and 5.57 [s] for DSP; hence the average computation time for a single s-t shortest

path calculation is equal: for DSP − TD=5.57/500=0.01114 [s], for A* −

TA*=32.38/500= 0.06476 [s]. We obtain that for M*≥28 calculation time of M*

shortest paths using A* is greater than using DSP, because * * * *M TA TG M TD⋅ > + ⋅

that is ⋅ = > + ⋅ =28 0.06476 1.81328 1.5 28 0.01114 1.81192 .

Fig. 3.5. Graphs of calculation time (represented by the number of dominating operations) for

finding the M shortest paths using the DSP algorithm (continuous line) and the Dijkstra’s algorithm

(dashed line) between random pairs of nodes (V=1024, n=4, n=16, n=64, n=256)

Moreover, the comparison of the DSP with the Hierarchical Algorithm (HA)

presented in (Chou et al., 1998) has been conducted using the S2 network

(described at the beginning of this chapter). To understand the algorithm we

present a short description of the HA. The Hierarchical Algorithm is designed to look

for paths in large networks representing road networks. A road network in this

model is divided into low level sub-networks (so-called micronetworks). If two

nodes between which we find a path belonging to the same sub-networks then the

path is looking for only in this sub-network (even then the optimal path uses nodes

from other sub-networks). If two nodes belong to different sub-networks then the

algorithm takes into consideration additional high level sub-network (so-called

macronetwork, which is the sub-network of the original one). Each node from

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

43

a macronetwork belongs to one or more micronetworks. Micronetworks may

identify the network of local roads and macronetworks may identify highways and

express roads. Looking for the shortest path between nodes belonging to different

sub-networks relies on looking for a path from the initial micronetwork (source

node belongs to this network) to any node m of the macronetwork, finding a path

inside the macronetwork and then finding a path inside the destination

micronetwork (destination node belongs to this network). If a macronetwork

contains more than one node, then we must decide which node (m) must be

choosen. We consider two strategies to this selection: NearestHA and BestHA. In the

NearestHA strategy we choose the nearest macronetwork's node to the

source/destination node in the micronetwork. In the BestHA strategy we choose

such a node from macronetwork, for which length of the paths being found is the

shortest. Path planning between micronetworks may be done using only the

macronetwork.

In order to use HA we "cover" the S2 network with macronetwork G** (as mesh

networks) with the length between macroarcs (arcs in the macronetwork) equals

dn=5 (see Fig. 3.6). Exactly 500 paths for randomly generated s-t pairs using the

DSP and the HA algorithms have been determined. Results presented in Table 3.3

show that the HA is faster than the DSP, but the error of the HA is significantly

greater than for the DSP. These results show the high sensitivity of these

algorithms to parameters. Inappropriate parameter settings (e.g. n for the DSP and

dn for the HA) lowers the quality of solutions. The DSP algorithm is more tolerant

to the initial model of a network. Moreover, in order to have correct computations

the HA requires both a whole initial graph and all micronetworks and

macronetworks to be strongly connected.

Fig. 3.6. Macronetwork G** constructed for dn=5

3. Models and Algorithms for Movement Planning

44

Table 3.3. The comparison of DSP (a) and Hierarchical Algorithm (b)
a)

dn Number
of b-nodes

(n)

Number
of b-arcs

(m)

G*
generation

time [s]

Time of DSP
[s]

Time of A*
[s]

Error
[%]

cmin cmax cmin cmax cmin cmax
4 2 500 9 800 1.8 6.62 6.43 36.18 36.77 27.86 7.75

5 1 600 6 240 1.91 4.49 4.17 32.13 34.21 25.56 6.88

10 400 1 520 3.38 3.15 2.04 37.72 32.82 19.99 5.45

20 100 360 6.2 4.11 2.71 36.64 38.39 16.5 4.47

b)

dn G**
generation

time [s]

Phase
I time

[s]

Time of HA
[s]

Time of A*
[s]

Error
[%]

Nearest
HA

Best
HA

Nearest
HA

Best
HA

Nearest
HA

Best
HA

4 168.30 30.40 0.08 0.21 39.17 40.90 25.42 21.44

5 105.70 15.63 0.09 0.19 39.32 41.54 28.65 22.68

10 28.16 12.67 0.09 0.15 40.19 40.46 38.83 22.89

20 7.80 39.40 0.08 0.63 38.58 39.04 44.60 19.30

Shown below are the advantages of using the DSP algorithm for finding the

all-pairs shortest paths in network G. We can formulate acceleration functions

FDijk(V, n) and FJohn(V, n) as follows:

()
(,)

(,)

Dijk

Dijk

DSP

T V
F V n

T V n
=

()
(,)

(,)
John

John

DSP

T V
F V n

T V n
= (3.9)

where ()DijkT V , ()JohnT V , (,)DSPT V n denotes, respectively, experimental average times

of finding the all-pairs shortest paths in G with V nodes using: V times Dijkstra’s

algorithm with 4-ary heaps, Johnson’s algorithm for sparse networks (Johnson,

1988), the DSP algorithm with n b-nodes.

Let the grid network with V squares (nodes) be given. We can formulate the

following optimization problem: to find such a cardinal n*, for which

*

{1,..., }
(,) max (,)

n V
F V n F V n

∈

= (3.10)

In Table 3.4 the experimental impact of V on n* and F(V,n*) is shown. The value of

n* may be approximated by function * 0.341.87n V≈ ⋅ and acceleration functions:
* 0.67(,) 0.39DijkF V n V≈ , * 0.62(,) 0.23JohnF V n V≈ , thus the average acceleration of DSP

algorithm with relation to the Dijkstra’s and Johnson’s algorithm is ≅O(V0.65).

Table 3.4. Experimental impact of the V on n* and FDijk(V, n*), FJohn(V, n*) for the all-pairs shortest

paths problem for V various numbers of nodes from G

V 100 500 1 000 5 000 10 000 100 000 200 000 1 000 000

n* 9 16 21 36 46 100 130 220

FDijk(V,n*) 9 25 40 118 187 865 1 380 4 000

FJohn(V,n*) 5 12 18 49 75 320 495 1 400

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

45

3.2.5. Parallelization of the DSP Algorithm

The DSP algorithm can be very easily computed in parallel (Tarapata, 2010a).

Because the DSP algorithm uses the Dijkstra’s shortest path (or A*) algorithms

(s.p.a.) as local-searching one, thus it is required to take into consideration the

known results of the parallelization of this algorithm and the other s.p.a. There are

many papers dealing with the problem of parallelization of s.p.a. Authors of the

paper (Paige & Kruskal, 1985) propose a parallel version of the Dijkstra's

algorithm, which uses a global reduction to extract the minimum distance node

and then partitions the set of neighbours of that node among multiple processors.

Using a binary heap-structured priority queue, this scheme has a running time of

()/ logO A p k V V+ ⋅ ⋅ , where A and V are the number of edges (arcs) and nodes in

the graph, p is the number of processors, and k is a constant representing the

relative cost of communication vs. computation on the particular platform.

A significant parallel speedup is possible only if /A p k≫ . Authors of the papers

(Kumar et al., 1994, sect. 7; Grama et al., 2003, sect.10) show several approaches for

parallelization of Dijkstra’s s.p.a., in which execution time Tp,Dijk of parallel the

Dijkstra's algorithm using p processors is proportional to:

, (/) log logp DijkT A p V V p= ⋅ + for the hypercube structure of the parallel computation

system and , (/) logp DijkT A p V V p= ⋅ + for the mesh structure of the parallel

computation system. Authors of the paper (Pantziou et al., 1990) show efficient

parallel algorithms, on the CREW PRAM1 model, for generating a succinct

encoding of all pairs shortest path information in a directed planar graph G with

real-valued edge costs but no negative cycles. They assume that a planar

embedding of G is given, together with a set of q faces that cover all the vertices.

Then their algorithm runs in O(log2V+log3q) time and employs O(Vq) processors.

Moreover, they present O(log2p) time, p-processor algorithms for various

subproblems, including that of generating all pairs shortest path information in

a directed outerplanar graph. Authors of other papers write about: parallelization

of single-source s.p.a. (Atallah et al., 1997; Crauser et al., 1998; Foster, 1995, sect.3.9;

Meyer & Sanders, 2001), parallelization of all-pairs s.p.a. (Atallah et al., 1997;

Foster, 1995, sect.3.9, Han et al., 1997), parallelization of geometric and dynamic

s.p.a (Lanthier et al., 2003, Subramanian, 1995).

Analyzing steps of the DSP algorithm in chapter 3.2.3.2 it is easy to observe

that the 3rd and the 4th steps are dominating from the point of view of algorithm

complexity and they decide on the form of estimation (3.8): the 3rd step is

dominating when n<<V and the 4th step − when n→V. Taking into consideration

that best value n* of n (from the point of view of time complexity) is proportional to

1 Concurrent Read, Exclusive Write (CREW) Parallel Random Access Machine (PRAM).

3. Models and Algorithms for Movement Planning

46

c V⋅ with small nonnegative value of c (see chapter 3.2.3.2), for the big value of V

we obtain that step 3rd is dominating. A very important problem from the point of

view of parallelization effectiveness is to assign processors to the nodes (b-nodes)

skilfully. Although we could assign each processor to subsets of nodes belonging

to different b-nodes to try to increase effectiveness of the parallel DSP algorithm

(PDSP), still this assignment may cause significant communication delays. The

smaller migration of the processors between b-nodes the smaller the

communications delay. The ideal solution from the point of view of minimizing

communication delays is to minimize the number of assignments of processors to

b-nodes. By doing this we minimize multiple copying subgraphs (b-nodes) to the

local memory being used by processors. To explain these differences let us

consider the structure of the G* from Fig. 3.7a. For example, having p=2 processors

it is better to assign the first processor to the left b-node, the second processor to

the middle b-node (single copying to the local memory of the processor) and next

(after calculating the shortest paths tree inside each b-node for each of the four

nodes) to assign the first and the second processor to the different half of the right

b-node. We then copy the subgraphs (b-nodes) for local memory of the processors

only 4 times. In the worst case, if we omit the condition regarding minimizing

migration of the processors between b-nodes, we may have a situation when each

of the processors is assigned alternately for the left, middle and right b-node and

we copy b-nodes for local memory of the processors V times (for each node inside

each b-node). We consider two versions of parallelization: with and without

parallelization of the Dijkstra’s algorithm being used as a searching algorithm in

the 3rd and 4th steps of the DSP. Let () logDijkt x x x= ⋅ describe the time complexity

of the Dijkstra’s algorithm in formula (3.8) and /N V n=    , ()' 4 / 1N V n = − 
.

Thus we can write (3.8) as follows: () ()()1 ' Dijk DijkT O n N t tN n= ⋅ ⋅ + .

Theorem 3.3

The acceleration A(p) of the parallel DSP (PDSP) algorithm using p processors

without parallelization of the Dijkstra’s s.p.a. inside the DSP is as follows:

1

' () ()
, when 1

/ ' () ()

' () ()
() , when '

(/) ' () ()

' () (), when

Dijk Dijk

Dijk Dijk

Dijk Dijk

p Dijk Dijk

Dijk Dijk

n N t N t n
n p

n p N t N t n

n N t N t nT
A p n N p n

T n p N t N t n

n N t N t n p n

⋅ ⋅ +

≥ ≥

⋅ ⋅ +  

⋅ ⋅ +

= = ⋅ > >

⋅ ⋅ +  

⋅ ⋅ + ≥ ⋅ 'N















(3.11)

and no communication between processors is required.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

47

Proof:

To prove the theorem we considered three cases of p values. We showed the

Tp complexity of the PDSP algorithm with p processors determining the form of the

Tp function. Let TB(p) describe the number of the Dijkstra’s algorithm’s parallel

runs (d.a.p.r.) inside the 3rd step of the DSP algorithm using p processors. For p=1,

TB(1) is equal (1) 'BT n N= ⋅ .

If 1n p≥ ≥ then, in the first step, each of the p processors can be assigned to

each of the p b-nodes of G* (see Fig. 3.7). This step uses / 'n p N⋅   d.a.p.r. For the

remaining /n n p p n− ⋅ <   b-nodes we use ()/ '/ 'n n p p N p N− ⋅ ⋅ <       d.a.p.r.

Thus we can write that

() ()() / ' / '/ / 1 ' / 'BT p n p N n n p p N p n p N n p N= ⋅ + − ⋅ ⋅ ≤ + ⋅ ≤ ⋅                   d.a.p.r.

Therefore the 3rd step of the DSP algorithm can be estimated using

/ ' () / 'Bn p N T p n p N⋅ ≤ ≤ ⋅       d.a.p.r. and hence the estimation for both the 3rd

and the 4th step of the DSP algorithm is as follows: ()= ⋅ ⋅ +  / ' ().p Dijk DijkT n p N t t nN

This estimation is the equality when (n mod p)=0 and otherwise (" ≤ ") it is an

inequality. For example, using p=2 processors (see Fig. 3.7a) we first assign each of

the p=2 processors to different b-nodes (dashed-line squares with 1 on the top) to

calculate the shortest paths tree (SPT) for 4 nodes inside each b-node

simultaneously using / 'n p N⋅   =4 d.a.p.r. Next, for the remaining / 1n n p p− ⋅ =  

b-nodes we assign p=2 processors to the subsets of N'/p=2 nodes (dashed-line

rectangles with 2 on the top) to calculate the SPT for 4 nodes inside the b-node

simultaneously using ()/ '/ 2n n p p N p− ⋅ ⋅ =       d.a.p.r (total d.a.p.r. = 4+2). Using

p=3 processors (see Fig. 3.7b) we assign each of the processors to each of the

b-nodes (dashed-line squares with 1 on the top) to calculate the SPT for 4 nodes

inside each b-node simultaneously using the total / ' 4n p N⋅ =   d.a.p.r.

n = 3

V/n = 4

V = 12

p=2<n => T
B

(2)=4+2=6 d.a.p.r.

1 21

p=3=n => T
B

(3)=4 d.a.p.r.

1 1 1

2

(a) (b)

Fig. 3.7. Processors assignment for n≥p≥1: (a) for p=2; (b) for p=3

If 'n N p n⋅ > > then we assign /p n   processors to each of the n b-nodes of

the graph G* and additionally 1 processor to each of the /p n p n− ⋅    b-nodes (see

3. Models and Algorithms for Movement Planning

48

Fig. 3.8). Thus, if (p mod n)≠0, then /p n p n− ⋅    b-nodes have / 1p n +   assigned

processors and /p n   processors otherwise, and they use (/) 'n p N⋅   d.a.p.r.

Finally, for the remaining ()/n p n p n− − ⋅    b-nodes we assign processors using 1

d.a.p.r. Therefore the 3rd step of the DSP algorithm can be estimated using

() (/) 'BT p n p N= ⋅   d.a.p.r. and2 ()(/) ' ()p Dijk DijkT n p N t t nN= ⋅ ⋅ +   . For example,

using p=5 processors (see Fig. 3.8a) we first assign / 3 1n p n⋅ = ⋅   processors to

different b-nodes and additionally 1 processor for each of the / 2p n p n− ⋅ =  

b-nodes (dashed-line squares with 1 on the top) to calculate SPT for 4 nodes inside

each b-node simultaneously using (/) ' 2n p N⋅ =   d.a.p.r. Next, for the remaining

()/ 3 2n p n p n− − ⋅ = −   b-nodes we assign 2 processors: each for the nodes

belonging to the remaining b-nodes (dashed-line rectangles with 2 on the top) to

calculate SPT for two nodes inside the b-node simultaneously always using 1

d.a.p.r (total d.a.p.r. = 2+1). Using p=2n=6 processors (see Fig. 3.8b) we conduct

analogical calculations when p=n=3 processors (see Fig. 3.7).

n = 3

V/n = 4

V = 12
p=5>n => T

B
(5)=2+1=3

d.a.p.r.

1 1

p=6=2n => T
B

(6)=1/2*4=2 d.a.p.r.

1 1 1

21 1

1

2 1 1 1

(a) (b)

Fig. 3.8. Processors assignment for nN'>p>n: (a) for p=5; (b) for p=6

If 'p n N> ⋅ then we assign 'n N⋅ processors to each of the 'n N⋅ nodes

(N' processors to each of the n b-nodes) of the graph G* using () 1BT p = parallel

d.a.p.r. and ()1 ()p Dijk DijkT t t nN= ⋅ + .

♦

Because the acceleration function A(p) of the parallel algorithm using p

processors is defined as (Foster, 1995; Kumar et al., 1994; Grama et al., 2003):

1() / pA p T T= thus we obtain formula (3.11) using () ()1 ' Dijk DijkT n N t tN n= ⋅ ⋅ + and

Tp defined as in the proof. Let us notice that, if () ()'Dijk Dijkt N tn N⋅≪ then the

acceleration function has the following form: ()1n p≥ ≥ ⇒ () / /A p n n p=    ,

2 Let us observe that (/) ⋅  n p N may not be equal (/) ⋅  n p N .

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

49

()'n N p n⋅ > > ⇒ () '/ (/) 'A p n N n p N= ⋅ ⋅   , ()'p n N≥ ⋅ ⇒ () 'A p n N= ⋅ . Effectiveness

E(p) of the PDSP is defined as (Foster, 1995; Grama et al., 2003): () () /E p A p p= .

In order to consider the parallelization of the Dijkstra’s algorithm inside the

DSP algorithm we use two estimations for ,p DijkT time complexity of parallel

Dijkstra’s algorithm using the p processor given in (Kumar et al., 1994, sect.7):

, () (1/) log logp DijkT V p A V V p= ⋅ ⋅ + for the hypercube structure of the parallel

computation system and , () (1/) logp DijkT V p A V V p= ⋅ ⋅ + for the mesh structure

of the parallel computation system. Let the follwing be given:
−

    
= ⋅ +    

⋅ ⋅    

1

, () () log
'

N
Dijk p Dijk

p p
t N t N N

n N n N
 and = ⋅ +, () (1/) () logn

Dijk p Dijkt n p t n n p

for the hypercube structure of the parallel computation system

and

−

    
= ⋅ +    

⋅ ⋅    

1

, () ()
'

N
Dijk p Dijk

p p
t N t N N

n N n N
 and = ⋅ +, () (1 /) ()n

Dijk p Dijkt n p t n n p

for the mesh structure of the parallel computation system.

Theorem 3.4

The acceleration A(p) of the parallel DSP (PDSP) algorithm using p processors with

the parallelization of the Dijkstra’s s.p.a. is created by replacing in the denominators of

(3.11) tDijk(N) with , ()N
Dijk pt N for p>nN' and tDijk(n) with , ()n

Dijk pt n for all p.

Proof:

It has been shown that the tDijk(n) estimation concerns the 4th step of the DSP

algorithm, which is done after the 3rd step of the DSP so we can compute it in

parallel independently of parallelization of the 3rd step. From the first element of

the Tp,Dijk formula results that having p processors we may calculate single shortest

path p times faster (hence we have (1/p)tDijk(n) in , ()n
Dijk pt n) and for the second

element of Tp,Dijk − communications "costs" are proportional to n⋅log p. The form of

the , ()N
Dijk pt N

estimation results from the following reasoning: we can compute in

parallel the Dijkstra’s s.p.a. inside the 3rd step of the DSP only for p>nN', because

we use all processors when 'p n N≤ ⋅ (see proof of the theorem 3.3). When the

p mod (nN')=0 then we assign p/nN' processors for each of the n b-nodes, so each

of the nodes inside each of b-nodes uses p/nN' processors to compute the SPT

parallelly and compute it / 'p n N⋅   faster than having a single processor. Thus

p from the Tp,Dijk formula is equal to / 'p n N⋅   in the formula
, ()N

Dijk pt N .

♦

3. Models and Algorithms for Movement Planning

50

(a) (b)

Fig. 3.9. Graphs of simulation results of acceleration A(p) for the PDSP algorithm (V=256, n∈{4, 9,

16, 25, 64}) for the hypercube (a) and the mesh (b) structure of the parallel computation system.

Continuous line concerns version of the PDSP with parallelization of the Dijkstra’s s.p.a. and the

dashed line – without parallelization of the Dijkstra’s s.p.a.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

51

(a) (b)

Fig. 3.10. Graphs of the simulation results of the E(p) effectiveness for the PDSP algorithm (V=256,

n∈{4, 9, 16, 25, 64}) for the hypercube (a) and the mesh (b) structure of the parallel computation

system. Continuous line concerns the version of the PDSP with parallelization of the

Dijkstra’s s.p.a. and dashed line – without the parallelization of the Dijkstra’s s.p.a.

3. Models and Algorithms for Movement Planning

52

In Fig. 3.9 and Fig. 3.10 we present simulation results (done using

MATHEMATICA 6.0 kernel) for acceleration (Fig. 3.9) and effectiveness (Fig. 3.10)

of the PDSP algorithm for both cases defined in theorems 3.3 and 3.4 (when we

parallelize and when we do not parallelize the Dijkstra’s s.p.a. inside the DSP

algorithm) and for two types of the structure of parallel computation systems:

hypercube and mesh. We have conducted these researches for V=256 and different

values of n: 4, 9, 16, 25 and 64. The greater n the better it shows the differences

between effectiveness and acceleration (for the same p) for the case when we

parallelize d.s.p.a. inside DSP. Moreover, it is visible that computations with

parallelization of the Dijkstra’s s.p.a. inside the DSP algorithm using the hypercube

structure is a little more effective and we obtain a little better acceleration of the

PDSP algorithm than using mesh structure.

3.2.6. Multiresolution Paths and the DSP Algorithm

Multiresolution environment is a nature of the hierarchical structure of

military units and methods of their behaviours on a simulated battlefield. For

a company level of units, greater precision of the terrain (environment) model is

required than, for example, for the brigade level. In a battlefield simulation many

models of the environment (terrain) representation is used (see chapter 2.1). The

most popular are two representations: regular grid of terrain squares (Fig. 3.11a)

and regular grid of terrain hexagons (Fig. 3.11b). The advantage of the first

(square) terrain representation is especially visible in a multiresolution context (see

Fig. 3.11c-e). The size of the terrain square may be dynamically changed and it

depends on the required level of units. A square with a greater size than the basic

size can be defined as a square matrix of basic-size squares (for example, in

Fig. 3.11d each square has a size of 2x2 basic squares). Such a representation is not

possible for hexagons, so square representation is more useful for multiresolution

terrain modelling and path planning. In Fig. 3.11c-e an example is shown of path

determination in the three-level graph: (c) the first level is the most detailed; (d) the

second level is two times less detailed than the first; (e) the third level is four times

less detailed than the first. These models may describe for example the platoon,

company and battalion levels on the battlefield. Let us note that it is easy to obtain

a multiresolution model of terrain by defining graph G* recurrently. If we establish

that graph G defines a terrain model of the first level (e.g. company level) than G*

defines a model of the second (or higher) level (e.g. battalion level). This reasoning

may be used to increase or to decrease each required level of model resolution.

Parameter n of the DSP algorithm (n∈{1,…,V}) can be used to decide on the

dimension of G*. Then, the DSP algorithm may be used for finding multiresolution

paths in such a multiresolution environment model. For example, in Fig. 3.11c

G*=G and contains n=256 b-nodes (for the platoon level), in Fig. 3.11d G* contains

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

53

n=64 b-nodes (for the company level) and in Fig. 3.11e G* contains n=16 b-nodes

(e.g. for the battalion level).

It is important to say that the presented method differs from very effective

representations of terrain using quadtree (Kambhampati & Davis, 1986) because of

two main reasons: (1) elements of the quadtree, which represent a terrain have

a non-regular size, (2) in majority applications quadtree represents only a binary

terrain with two types of regions: open (passable) and closed (impassable). This

approach is very effective for mobile robots, but it is not adequate to represent

multiresolution battlefield (Tarapata, 2003a).

Fig. 3.11. Examples of terrain representation in a simulated battlefield: a) regular grid of terrain

squares; b) regular grid of terrain hexagons; multiresolution shortest path from s to t using the DSP

algorithm in G*: c) G*=G contains 16×16 nodes; d) G* contains 8×8 nodes; e) G* contains 4×4 nodes

Let us note that the multiresolution approach for path planning represented

by finding shortest paths in recurrently defined G* can also be used for multistage

path planning: first we can find a "rough" path *min * *(,)s td x x (or *max * *(,)s td x x) − in

a "rough" terrain represented by G* (for example in Fig. 3.11e) and then we can find

an accurate path in a more detailed environment (represented by G with small

squares, Fig. 3.11c; more precisely: we find the shortest path from s to t (s-t path)

inside the subgraph generated by nodes of G belonging to b-nodes of *min * *(,)s td x x

(or (*max * *(,)s td x x , see the 5th step of the DSP algorithm). This is an example of

top-down modelling.

3. Models and Algorithms for Movement Planning

54

3.3. Multiobjective Paths Planning

3.3.1. Description of the Problem

The aim of this chapter is to analyze the complexity of the multiobjective

(multicriteria) shortest paths (MOSP) problems and to show how we can use

modifications and advantages of fast implementations of the Dijkstra’s algorithm

(using effective data structures such as the Fibonacci's heaps and d-ary heaps) in

order to effectively and optimally solve the selected the MOSP problems.

The problem of finding the shortest path from a specified origin node to

another node has been considered, traditionally, in the framework of the single

objective optimization. More specifically, it is assumed that a value is associated to

each arc (for example, the length or the travel time), and the goal is to determine

the feasible path for which either the total distance or the total travel time is

minimized (see chapter 3.1). In many real applications it is often found that a single

objective function is not sufficient to characterize adequately the problem. In such

a case the (MOSP) are used. There are many publications, which deal with these

problems in two frequently used domains: computer networks (Cidon et al., 1997;

1999; Grzech, 2002; Kerbache et al., 2000; Silva & Craveirinha, 2004; Tarapata,

2005c) and transportation (Caramia & Guerriero; 2009; Dial, 1979;

Halder & Majumber, 1981; Rana & Vickson, 1988; Fujimura, 1996; Modesti

& Sciomachen, 1998). For instance, in transportation networks, a typical situation

that can be adequately represented only considering more objectives is related to

military route planning, where time, distance, ability to camouflage on the path

must be taken into account at the same time (Tarapata, 2003a; 2007d). Another

application, in which it is important to deal with several factors, is represented by

path planning, where the goal is to find a navigation path for a mobile robot

(Fujimura, 1996). In this case, the navigation path can be considered acceptable

only if it satisfies multiple objectives, such as safety, time and energy consumption.

In computer networks (as a special case of transportation networks) routing

problems are one of the most essential applications of the MOSP problems. The

most often used criteria of route selection depend on quality of service (QoS)

(Silva & Craveirinha, 2004). These criteria are, for example, as follows:

minimization of the number of lost packages; minimization of maximal delay time

of packages; minimization of the number of disjoint routes or minimization of

maximal transmission time for the disjoint routes (in case of disjoint routes);

minimization of overload, measured with the mean value of traffic crossing by

link; minimization of transmission time from source to destination; minimization

of route length; minimization of probability of route unreliability or maximization

of probability of route reliability. Single-criterion formulations of routing problems

use previously defined criteria. The choice of an appropriate method for solving

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

55

the defined problems depends on answers to the following questions: whether we

want to determine routes statically (algorithms: Dijkstra’s, Ford-Bellmann’s, PDM,

A*) or dynamically (adapting to current load) (Djidjev et al., 1995); are there

stochastic dependencies in the network (Sigal et al., 1980; Korzan, 1982; 1983a;

1983b; Loui, 1983; Tarapata, 1999a; 2000e); whether we find the path for a single

task or simultaneously for many tasks (e.g. through disjoint paths transmitting

voice and picture or allocating channels in optical networks) (Li et al., 1992;

Schrijver & Seymour, 1992; Sherali et al., 1998; Tarapata, 1999a); whether we plan to

determine alternative paths (Golden & Skiscim, 1989). There are many papers

which deal with the description of practical examples of using many criteria in

routing problems (Kerbache & Smith, 2000; Silva & Craveirinha, 2004). For

example, authors of the paper (Climaco et al., 2002) consider a bicriterion approach

for routing problems in multimedia networks. In practical considerations we often

use contradicted criteria e.g. fast and reliable access to the services (risk-profit)

(Korzan, 1982; 1983a; 1983b; Loui, 1983; Tarapata, 1999a; 2000e; 2007d). In such

cases we can formulate and solve multicriteria optimization problem to support

the decision of network designers (in computer or transportation networks) or

administrators (traffic managers in transportation).

3.3.2. State of the Art in the Multiobjective Shortest Paths Problems (MOSP)

The MOSP problems are among the most tractable of NP-hard discrete

optimization problems (Garey & Johnson, 1979). In the work of (Hansen, 1979) the

existence was proved of a family of problems with an exponential number of

optimal solutions. This implies that any algorithm solving the multiobjective

shortest path problem is, at least, exponential in the worst case analysis. On the

other hand some papers (Warburton, 1987; Vassilvitskii & Yannakakis, 2004;

Tsaggouris & Zaroliagis, 2005) show that practical ε-approximate algorithms are

generally limited either to problems having 2 or 3 criteria, or to problems requiring

the ε-approximation of only certain restricted sets of efficient paths. One of the

most popular methods of solving the MOSP problems is the construction

of approximate Pareto curves (Papadimitriou & Yannakakis, 2000; Vassilvitskii

& Yannakakis, 2004). Informally, a (1+ε)-Pareto curve P
ε
 is a subset of feasible

solutions such that for any Pareto optimal solution, there exists a solution in P
ε
 that

is no more than (1+ε) away in all objectives. Papadimitriou and Yannakakis in their

work (Papadimitriou & Yannakakis, 2000) show that for any multiobjective

optimization problem there exists a (1+ε)-Pareto curve P
ε
 of (polynomial) size P

ε

=O((4B/ε)N-1), where B is the number of bits required to represent the values in the

objective functions (bounded by a polynomial in the size of the input), that can be

constructed by O((4B/ε)d) calls to a "gap" routine that solves (in time polynomial in

3. Models and Algorithms for Movement Planning

56

the size of the input and 1/ε) the following problem: given a vector of values of a,

either compute a solution that dominates a, or report that there is no solution better

than a by at least a factor of 1+ε in all objectives (see definition 3.1 in chapter

3.3.3.1). Extensions to this method to produce a constant approximation to the

smallest possible (1+ε)-Pareto curve for the cases of 2 and 3 objectives are

presented in (Vassilvitskii & Yannakakis, 2004), while for N>3 objectives

inapproximability results are shown for such a constant approximation. For the

case of the MOSP (and some other problems with linear objectives), Papadimitriou

and Yannakakis (Papadimitriou & Yannakakis, 2000) show how a "gap" routine

can be constructed (based on a pseudopolynomial algorithm for computing exact

paths), and consequently provide a FPTAS (Fully Polynomial Time Approximation

Scheme) for this problem. Note that FPTAS for the MOSP problems were already

known in the case of two objectives (Hansen, 1979), as well as in the case of

multiple objectives in directed acyclic graphs (DAGs) (Warburton, 1987). In

particular, the 2-objective case has been extensively studied

(Ehrgott & Gandibleux, 2002), while for N>2 very little has been achieved; actually

the results in (Warburton, 1987; Papadimitriou & Yannakakis, 2000;

Tsaggouris & Zaroliagis, 2005) are the only and currently the best FPTAS known

results. Let Cmax denote the ratio of the maximum to the minimum edge weight (in

any dimension), V denotes the number of nodes in a digraph, A denotes the

number of arcs (edges) and N is the number of criteria. For the case of DAGs and

N>2, the algorithm of (Warburton, 1987) runs in ()

max 1
(log()) 2(log)

N
V VC V NO VA

εε

−

− 
 
 

time, while for N=2 this improves to ()

1 maxlog log()O VA V nC
ε

. For N=2, a FPTAS

can be created by repeated applications of a stronger variant of the "gap" routine −

like a FPTAS for the restricted shortest path (RSPP) problem (Hassin, 1992;

Lorenz & Raz, 2001; Ergun et al., 2002). In (Vassilvitskii & Yannakakis, 2004) it is

shown that this achieves a time of ()
1*(log log)O VAP V

ε ε

+ for general digraphs and

()
* /O VAP

ε

ε for DAGs, where *P
ε

 is the size of the smallest possible (1+ε)-Pareto

curve (which can be as large as 1max max
1log ln()VC VC

ε ε+

≈). All these approaches

deal typically with the single-pair version of the problem. Authors of the work

(Tsaggouris & Zaroliagis, 2005) show a new and remarkably simple FPTAS for

constructing a set of approximate Pareto curves for the single-source version of the

MOSP problem in any digraph. For any N>1, their algorithm runs in time

()

max 1
log()

N
V VCO VA

ε

− 
 
 

 for general digraphs, and in ()

max 1
log()

N
V VCO A

ε

− 
 
 

 for DAGs.

These results improve significantly upon previous approaches for general digraphs

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

57

(Golden & Skiscim, 1989; Hassin, 1992) and DAGs (Henig, 1985; Hassin, 1992), for

all N>2. For N=2 their running times depend on ε -1, while those based on

repeated-RSPP applications (like in (Vassilvitskii & Yannakakis, 2004)) depend on

ε -2. Their approach for the MOSP, unlike previous methods that are based on

converting pseudopolynomial time algorithms to FPTAS using rounding and

scaling techniques, builds upon a natural iterative process that extends and merges

sets of node labels representing partial solutions, while keeping them small by

discarding some solutions in an error controllable way. One of the first papers,

which dealt with the MOSP problems, was (Loui, 1983). The paper explores

computationally tractable formulations of stochastic and multidimensional optimal

path problems. A single formulation encompassing both problems is considered, in

which a utility function defines preference among candidate paths. The result is

the ability to state explicit conditions for exacting solutions using standard

methods, and the applicability of well-understood approximation techniques.

Korzan wrote three papers (Korzan, 1982; 1983a; 1983b), which deal with the

shortest path problem in unreliable networks. In the first one he presents methods

of determining the optimal path in unreliable directed networks under different

assumptions concerning randomness of network elements. He assumes the

vectoral objective function with two components: path length (e.g. time) and some

measure of unreliability (e.g. probability of path "surviving"). An appropriate

multioptimization problem and method for determining compromise path for this

problem is described there. Some extensions of problems and their solving

methods included there were discussed in further two papers (Korzan, 1983a;

1983b). In the papers (Tarapata, 1999a; 2000e) an optimization problem of a few

tasks sending in a parallel or distributed computing system under conditions of

unreliability of computers and lines is considered. As a model of the system

a network is used with functions described on its nodes (time of task service in

node and probability of nodes (computers) reliability) and arcs (time distances

between nodes and probability of arc (line) reliability during transmission). The

damaging process of a network element (node or arc) is begun: when a task starts

its service in it (for a node) or its movement (for an arc) and it does not depend on

the time, which elapsed from the start time of tasks sending (Tarapata, 1999a);

when tasks start its service (or movement) in source nodes (Tarapata, 2000e). In the

second case, the "time-life" distribution of network elements depends on the time,

which elapsed from the start time of tasks sending. It may be explained by the fact

that, for example, the probability of damaging an element of a computer network is

grows in time. In the military communication systems the probability of destroying

elements of the system depends on its working time (the longer the system

working time the greater the possibility of the system locating and, in consequence,

the higher the probability of annihilation of any elements of the system).

3. Models and Algorithms for Movement Planning

58

A problem for determining the best set of K>1 disjoint paths in an unreliable

network is formulated as a two-criteria optimization problem, in which the first

criterion is the time of sending the slowest task (or the sum of times of sending all

tasks) being minimized and the second one – the probability of reliability of all

(K>1) paths being maximized. An approximation algorithm to solve the

optimization problem is shown. The algorithm generalizes the Dijkstra’s shortest

path algorithm in the case when we look for the K (K>1) disjoint paths in the

network with two functions (probabilities and distances) described on the network

nodes and arcs. Moreover, some conclusions concerning particular conditions,

which the paths should satisfy, are given.

Table 3.5. Classification of the Multiobjective Shortest Path Problems (MOSP)

Code of the problem References

2-SUM/E/LC (Tung & Chew, 1988; Brumbaugh-Smith & Shier, 1989;

Skriver & Andersen, 2000)

2-SUM/E/LS (Hansen, 1979)

2-SUM/E/2P,LC (Mote et al., 1991)

2-SUM/E/SP (Martins & Climaco, 1981; Climaco & Martins, 1982;

Huarng et al., 1996)

2-SUM/E/DP (Henig, 1985)

2-SUM/ Appr(E)/Appr (Hansen, 1979)

1-SUM 1-max/E/SP (Hansen, 1979; Pelegrin & Fernandez, 1998)

2-SUM/C/IA (Current et al., 1990)

2-SUM/U/SP (Henig, 1985)

2-SUM/U/IA (Murthy & Olson, 1994)

2-SUM/e/IA (Coutinho-Rodrigues et al., 1999)

2-SUM/C,SCH/LS (Korzan, 1982; 1983b)

2-SUM/lex,SCH/LS (Korzan, 1983a; 1983b)

3-SUM/E/LC (Gabrel & Vanderpooten, 1996)

3-SUM/C/IA (Gabrel & Vanderpooten, 1996)

Q-SUM/SE/SP (Henig, 1985; White, 1987)

Q-SUM/E/LS (Martins, 1984)

Q-SUM/E/LC (Tung & Chew, 1992; Corley & Moon, 1985; Cox, 1984)

Q-SUM/E/DP (Hartley, 1985; Kostreva & Wiecek, 1993)

Q-SUM/Appr(E),Appr(MO)/Appr (Warburton, 1987)

Q-SUM/C/IA (Henig, 1994)

Q-SUM/U/DP (Carraway et al., 1990)

Q-SUM/U/SP (Modesti & Sciomachen, 1998)

Q-SUM/MO/DP,BB (Rana & Vickson, 1988)

Q-SUM/MO/LC (Murthy & Her, 1992)

Q-SUM/U,SCH/Appr (Loui, 1983)

Q-SUM/MO,D,C,lex,SCH/Appr,LS (Tarapata, 1999a; 2000e; 2005c; 2007d)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

59

Generally, the multiobjective shortest path problem can be considered from

the point of view of the following categories: number of criterions, type of problem

(compromise solutions, lexicographic solutions, max-ordering problem, etc.),

solution method (label setting or correcting algorithm, tabu search algorithm,

simulated annealing algorithm and others). In Table 3.5 we classify the MOSP

problems (as modification of classification proposed in (Ehrgott & Gandibleux,

2002)) using notation X/Y/Z where: X describes the number and type of objective

functions (X=Q stands for an arbitrary number of objectives, e.g. 1-SumQ-max

denotes a problem with the sum and Q bottleneck objectives), Y denotes the types

of problems, Z denotes the types of solution methods. The entries for the Y

position are as follows: E − finding the efficient set, e − finding a subset of the

efficient set, SE − finding supported efficient solutions, Appr(x) − finding an

approximation of x, lex − solving the lexicographic problem (preemptive priorities),

MO − max-ordering problem, U − optimizing a utility function, C/S − finding

a compromise respectively satisfying the solution, D − disjoint-path problem, SCH

– stochastic problem. The entries for the Z position are as follows: SP − exact

algorithm specifically designed for the problem, LS/LC − label setting or label

correcting method, DP − algorithm based on dynamic programming, BB −

algorithm based on branch and bound, IA − interactive method, 2P − two phases

method, Appr − approximation algorithm with worst case performance bound.

Other particular multiobjective path problems are presented in (Dial, 1979;

Engberg et al, 1983; Halder & Majumber, 1981; Sancho, 1988; Wijeratne et al., 1993).

3.3.3. Model of the MOSP Problem

3.3.3.1. Formulation of the MOSP problem

Let the directed graph ,G GG V A= be given, where VG – set of graph nodes,

VG={1,2,...,V}, AG – set of graph arcs, { }, ' : , 'G GA v v v v V⊂ ∈ , GA =A. For example,

in computer networks we have routers as nodes of G and physical links between

routers as arcs of G. Generally, for each arc of G we may define arc functions

fn(v,v’), n=1,…,N, which describe such characteristics of the arc , ' Gv v A∈ as:

transmission time, distance, load, reliability, capacity, acceptable flows, etc. We

assume that, there are K tasks, which we need to transport from source nodes is to

destination ones id, ()(1), (2), ..., (), ..., ()s s s s si i i i k i K= , ()(1), (2), ..., (), ..., ()d d d d di i i i k i K= .

For K=1 we have a classical case of routing for a single task. In some examples used

in the chapter we use a computer network model such as G with predefined matrix

c=[cv,v’]VxV, where 1 2
, ' , ' , ' , ' , ', , ..., , ...,k K

v v v v v v v v v vc c c c=c , , '
k
v vc – nonnegative value

describing transaction (transmission) time (cost) of the k-th task on the arc

3. Models and Algorithms for Movement Planning

60

, ' Gv v A∈ (when v≠v’). Moreover, let ((), ())s d
kI i k i k describe the simple path and

((), ())s d
kT i k i k describe achieving times of nodes belonging to the path for the k-th

task as follows:

()
0 1

((), ()) () (), (),..., (),..., () ()= = =
kRs d s r d

k
I i k i k i k i k i k i k i k i k

(3.12)

()
0 1((), ()) (), (), ..., (), ..., ()kRs d ri k i k k k k kτ τ τ τ=

k
T (3.13)

where: ()ri k − the r-th node on the path for the k-th task; ()r kτ − achieving time of

the r-th node on the path for the k-th task,

1(), ()
1

() m m

r
r k

i k i k
m

k cτ
−

=

=∑ , 1, , 1,kr R k K= =

 (3.14)

We establish that if K=1 we omit index k (i.e. ir(1)≡ir, τ r(1))≡τ r, etc.).

 We describe by M(is,id) the set of acceptable K-dimensional vectors of paths

in G from is to id, and by I(is,id) – the element of M(is,id). It can be observed, that

I(is,id) is a vector which components are simple paths for each k-th task. We also

establish, that I≡I(is,id) (we omit is and id in the description). We assume that we

have a N-component vector 1 2() (), (), ..., ()NF I F I F I F I= of criteria functions

estimating vector of paths I∈M(is,id). We have an arc function fn(v,v’), , ' Gv v A∈ ,

{1, ..., }n N∈ , which will be used to calculate Fn(I) (e.g. as a sum of values of fn(v,v’)

for arcs belonging to the path I). Thus, we can say that we have defined in the set

M(is,id) the vectoral objective function as follows:

 1 2() (), (),..., ()NF I F I F I F I= , I∈ M(is,id) (3.15)

The multicriteria shortest paths (MOSP) problem can be formulated as follows:

(,), (),s d DM i i F I R (3.16)

where (,) (,)D D s d D s dR Y i i Y i i⊂ × is the domination relation in the criteria space

 { }1 2(,) () () (), (),..., () : (,)D s d s d
NY i i y I F I F I F I F I I M i i= = = ∈ and (3.17)

(){ }(), () (,) (,) : (), () 1D D D
m z m zR F I F I Y Y F I F I= ∈ ⋅ ⋅ × ⋅ ⋅ Ψ = (3.18)

()

1 when F() "is better" than F()
(), ()

0 otherwise
m z

m z

I I
F I F I


Ψ = 


 (3.19)

We can solve problem (3.16) using various methods of finding the so-called

nondominated solutions. The set of nondominated results equals:

() (,)
() ()

(,) () (,) : ~ (), ()
D

ND s d D D

z I Y
z I y I

Y i i y I Y z I y I R
∈ ⋅ ⋅

≠

  
= ∈ ⋅ ⋅ ∃ ∈ 
  

(3.20)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

61

The set of nondominated solutions (paths) is determined as an inverse image

of (,)ND s dY i i as follows:

{ }(,) (,) : () (,) ND s d s d NDM i i I M i i y I Y= ∈ ∈ ⋅ ⋅

(3.21)

In order to solve the MOSP problems other approaches are also used, e.g. the

vector ε-domination (Warburton, 1987; Tsaggouris & Zaroliagis, 2005). The vector

ε-domination method uses Definition 3.1.

Definition 3.1 (Warburton, 1987)

We say that vector 1 2, , ..., Na a a a= ε-dominates vector 1 2, , ..., Nb b b b= for

the fixed ε ≥ 0 (we write: a b
ε

≤), if the following formula is satisfied:

1,
 (1)n n

n N
a bε

=

∀ ≤ + ⋅

(3.22)

In some approaches it is additionally assumed that for at least one of the

{ }1,...,n N∈ , e.g. n’ we have ' '(1)n na bε< + ⋅ . It can be observed that for ε=0 this

concept reduces to the usual notion of vector dominance. To use this approach we

have to replace the domination relation (3.18) with the ε-domination relation

{ }(), () (,) (,) : () ()D D D
m z m zR F I F I Y Y F I F I

ε

ε

= ∈ ⋅ ⋅ × ⋅ ⋅ ≤ and we can solve a problem of

finding the ε-shortest path which, according to (3.22), has cost no more than (1+ε)

away from the optimal values for all objectives. Warburton in the paper

(Warburton, 1987) studies methods for approximating the set of Pareto optimal

paths in multiple-objective, shortest path problems. He gives the approximation

methods that can estimate the Pareto optima to any required degree (ε) of

accuracy. The basis of his results is that the proposed methods are "fully

polynomial": they operate in time and space bounded by a polynomial in problem

size and accuracy of approximation – the greater the accuracy, the more time

required to reach a solution.

3.3.3.2. Example of the routing problem formulation as a two-criteria

optimization problem

 In the example of the routing problem formulation as the MOSP problem it

is assumed that on each arc , 'v v of the G graph we additionally define a function

, '()v vq t (identical for each task 1,k K= , so we omit k in the description of , '()v vq t),

which describes the probability of the arc reliability at least at the time t:

{ }, ', '() Pr v vv v
tq t γ ≥= , γv,v’ – nonnegative random variable representing "time-life" of

the arc , 'v v . We assume that random variables γv,v’ are nonnegative and

3. Models and Algorithms for Movement Planning

62

independent for each pair , 'v v of arcs. Then for each vector of paths I in G we

can define the probability that all K disjoint paths will "survive" as follows:

 () ()1
1 (), () (), ()

1 1

(,)
k

r r
r ri k i k

RK
s d k

i k i k
k r

P I i i q c
−

−

= =

=
∏∏

(3.23)

Next we also define the time of achieving the destination nodes by all K tasks, as

time of achieving the destination node by the most delayed task (3.24) or as a sum

of achieving times of the destination nodes (3.25):

()
{1,..., }

(,) max ()kRs d

k K
T I i i kτ

∈

=

or (3.24)

()

{1,..., }

(,) ()kRs d

k K

T I i i kτ

∈

= ∑

(3.25)

Then the vectoral objective function (3.15) has the form of:

() (), ()F I T I P I= , I∈M(is,id), (3.26)

i.e. F1(I)=T(I), F2(I)=P(I). Criteria space (,)D s dY i i has the form:

{ }(,) () (), () : (,)D s d s dY i i F I T I P I I M i i= = ∈ , (3.27)

and function (3.19) (which causes that relation (3.18) is a Pareto relation):

()

()

()

1 when () () () ()

(), () () () () ()

0 otherwise

m z m z

m z m z m z

T I T I P I P I

F I F I T I T I P I P I

 < ∧ ≥ ∨


Ψ = ∨ ≤ ∧ >




(3.28)

We can equivalently define the problem formulated above as follows: to

determine ()
*(,) ,s d s dI i i M i i∈ , for which

() ()

() ()

* *

(,) (,)

* *

(,) (,)

(,) min (,) ,

(,) max (,) or

s d s d

s d s d

s d s d

I i i M i i

s d s d

I i i M i i

T T I i i T I i i

P P I i i P I i i

∈

∈

= =

= =

(3.29)

() ()

*

(,) (,) (,) (,)

ˆ ˆmin min 1(,) (,)
s d s d s d s d

s d s d

I i i M i i I i i M i i
P P PI i i I i i

∈ ∈

= = −

(3.30)

Generally, if the objective is to maximize one or more components of F(I)

from (3.15), the MOSP algorithms can be applied to compute efficient paths only if

G is acyclic (DAG). If G contains cycles and N=1 we solve the NP-hard longest path

problem (for N>1 the problem is at least as difficult as for N=1) (Garey & Johnson,

1979). Therefore, we assume that all components of F(I) are minimized and all of

these have nonnegative values.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

63

3.3.4. Methods of Solving the MOSP Problems

3.3.4.1. Methods of solving single-criterion subproblems of the MOSP problem

Method of determining T* and P* from (3.29)-(3.30) depends on number K of

tasks, for which we determine paths. If K=1, then we have the classical shortest

paths problem in graph G for fixed pairs of nodes (is, id) with the arc function , 'v vc .

This problem could be solved for the criterion function ((,))s dT I i i using, e.g.

algorithms described in chapter 3.1. When the arc function is nonadditive or

nonlinear we can use the approach described by the authors in (Bernstein & Kelly,

1997; Cai et al., 1997) or we can formulate a nonlinear optimization problem and

solve it using Kuhn-Tucker’s optimality conditions. For the function ˆ((,))s dP I i i the

approach presented in (Korzan, 1983b) could be used. Even though the function

ˆ((,))s dP I i i from (3.30) is multiplicative (multiplications of probabilities), then it is

possible to obtain an additive form as follows:

() ()1
1 (), () (), ()

1 1

ˆ (,) ln
k

r r
r ri k i k

RK
s d k

i k i k
k r

P I i i q c
−

−

= =

=∑∑
ɶ

 (3.31)

Defining the arc function as: ()1 , ' , '(, ') ln v v v vf v v q c= we can solve the problem

(3.29)-(3.30) optimally using the Dijkstra’s algorithm (because of function 1(, ')f v v is

additive and nonnegative). The obtained solutions (i.e. *(,)s dI i i) both for function

ˆ((,))s dP I i i and ˆ((,))s dP I i i
ɶ

 are identical. Other approaches to find the best path in

stochastic graphs are considered in (Corea & Kulkarni, 1990; Cormican et al., 1998;

Sigal et al., 1980; Korzan, 1982; 1983a; Loui, 1983; Tarapata, 1999a; 2000e).

The situation is more complicated when K>1. If we want to find disjoint

routes for K tasks then even for K=2 and function ((,))s dT I i i the problem is

NP-hard (Schrijver & Seymour, 1992; Schrijver, 2004). Disjoint paths problems we

will consider in chapter 3.4.

In further considerations in this chapter we assume that K=1. Let us note that

for K=1 the objective functions (3.24) and (3.25) are equivalent. We also assume that

1 1
si s= , 1 1

di t= .

3.3.4.2. Method of compromise solutions

To find the compromise solution with parameter p≥1 we use the εp metric in

the YD(⋅,⋅) space:

* * *

1

(, ()) , () ()
N p

p
p n np

n

h h I h h I h h Iε

=

= = −∑

(3.32)

For the compromise result h0 the following condition is satisfied:

3. Models and Algorithms for Movement Planning

64

() ()

* 0 *

(,)
, () min , ()

s dp p
I M i i

h h I h h Iε ε

∈

=

(3.33)

The compromise solution (,)c s dI M i i∈

 is such that the formula (3.33) is fulfilled.

Let us note that the metric (3.32) defines different distances from the "ideal" point

(Ameljańczyk, 1984):

• for p=1 we obtain the sum of absolute deviations from ideal point (street

metric);

• for p=2 we obtain the Euclidesian metric (in two-dimensional space =

geometric distance between points) – "the best" compromise (Current et al.,

1990; Gabrel & Vanderpooten, 1996; Henig, 1994; Korzan, 1982; 1983b);

• for p=∞ we obtain the Tchebycheff metric (minimization of maximal

differences between "ideal" and actual value of criteria); this problem is also

known as the max-ordering problem (Mote et al., 1991; Rana & Vickson, 1988;

Warburton, 1987).

To find compromise solution with parameter p≥1 we use the metric ε1 replacing

() with ()T I T I and () with ()P I P I . In order to find a compromise solution of the

problem (3.16) with a vectoral objective function () (), ()F I T I P I= we have to

determine T* and P* using the method described in the previous chapter. Having T*

and P* we can define
* *

() ()
() , ()

P I T I
P I T I

P T
= = by obtaining the normalized vector

objective function:

* *

() ()
() ,

T I P I
h I

T P
=

(3.34)

under the assumption, that T*
≠0 and P*

≠0. It can be observed that () 1T I ≥ and

() 1P I ≤ , I∈M(⋅,⋅) so we can obtain the normalized ideal point * (1,1)h = .

For example, for p=1 we obtain:

*
1 * *

() ()
(, ()) 1 1

T I P I
h h I

T P
ε = − + − (3.35)

From the condition, that
*

()
1

T I

T
− ≤ 0 and

*

()
1

P I

P
− ≥ 0 results:

*
1 * * * *

() () () ()
(, ()) 1 1

T I P I T I P I
h h I

T P T P
ε = − + − = − (3.36)

For the compromise h0 result the following condition is satisfied:

* 0 *
1 1 * *

(,) (,)

() ()
(, ()) min (, ()) min

s d s dI M i i I M i i

T I P I
h h I h h I

T P
ε ε

∈ ∈

 
= = −  

 (3.37)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

65

For the compromise solution (,)c s dI M i i∈ (with p=1) above formula is fulfilled.

However, since function
* *

() ()T I P I

T P
− has positive values then it is difficult to

build an additive nonnegative arc function to calculate it. It is very inconvenient,

because the Dijkstra’s algorithm (as a classical algorithm solving shortest path

problem) requires the values of the arc function to be nonnegative and additive

(function *
1(, ())h h Iε is nonadditive because of multiplications during the

calculation of the
*

()P I

P
 value). The author of the paper (Korzan, 1982) shows that

(for single task, i.e. K=1) if the arc function , '()v vq t is in the form of

(, ')

, '() , (, ') 0v v t

v vq t e v vλ

λ

− ⋅

= > , that is the probability function P from (3.23) equals:

() ()

1
1 1

1 11 1 1 , 1 , 1
1

1 ,

(,)
(,) 1

,
1 1

(,)

R
r r

r r r ri ir ri i r
r r

r ri i

R R i i c
i i cs d

i i
r r

P I i i q c e e
λ

λ

−

−
−

−

=

−

−

− ⋅

− ⋅

= =

∑
= = =

∏ ∏ (3.38)

then the maximization of ()(,)s dP I i i is equivalent to minimization of

()

1

1

1 1

,
1

(,) (,) r r

R
s d r r

i i
r

I i i i i cβ λ
−

−

=

= ⋅∑ . In this case we can define a new normalized

vectoral objective function * *ˆ() () / , () /h I T I T Iβ β= , where ˆ() () , ()h I T I Iβ= ,

*() ()/T I T I T= , *() ()/I Iβ β β= and ideal point * (1,1)h = . Determining a new

measure 1ε̂ we obtain *
1

ˆˆ (, ()) 1 () 1 ()h h I T I Iε β= − + − . But 1 () 0T I− ≤ and

1 () 0Iβ− ≤ , so we obtain *
1

ˆˆ (, ()) () 1 () 1 () () 2h h I T I I T I Iε β β= − + − = + − . It can be

observed that the function () () 2T I Iβ+ − has the minimum value for the same I as

the function () ()T I Iβ+ , so the component (-2) may be omitted and we have:

* 0 *
1 1

(,) (,)

ˆ ˆˆ ˆ(, ()) min (, ()) min () ()
s d s dI M i i I M i i

h h I h h I T I Iε ε β

∈ ∈

 = = + 

(3.39)

The objective function from (3.39) is nonnegative and additive. Let us define the

temporary function ()H I as () () ()H I T I Iβ= + , so

1 1

1 1

1

1

1 1 1

* * * *, ,
1 1

1 1
* * ,

1

() () 1 1
() (,)

1 1
(,) =

r r r r

r r

R R
r r

i i i i
r r

R
r r

i i
r

T I I
H I c i i c

T T

i i c
T

β

λ

β β

λ

β

− −

−

−

= =

−

=

= + = + ⋅ =

 
+ ⋅ ⋅ 

 

∑ ∑

∑
 (3.40)

In connection with the above we can define the problem of finding the compromise

path (,)c s dI M i i∈ with p=1 as follows: to determine (,)c s dI M i i∈ , such that

(,)
() min ()

s d

c

I M i i
H I H I

∈

= (3.41)

3. Models and Algorithms for Movement Planning

66

To solve the problem (3.41) optimally using the standard Dijkstra’s algorithm we

can use the following arc meta-function (, ')mf v v :

1
, '* *

1 1
(, ')(, ') v v
v vmf v v c

T
λ

β

 
+ ⋅= ⋅ 

 
, , ' Gv v A∈

(3.42)

The definition presented above has one more interesting property: if for each arc

, ' Gv v A∈ it is fulfilled that (, ') 0v vλ λ= > then ()

1

1

1

,
1

(,) r r

R
s d

i i
r

I i i cβ λ
−

=

= ⋅∑ and

* *

() ()ˆ() ,
T I T I

h I
T T

λ

λ

= , so we can solve single-criterion problem with criterion T.

Generally, if arc functions f1, f2, …, fN are nonnegative, additive (i.e.

1() 1

1
0

() ((1), (1))
R I

n n r r
r

F I f i i
−

+

=

= ∑) and all of these are minimized then the ε1 measure from

(3.32) (for p=1) has the form of:

1 1

1
0

1 * *
1 1

(,)
()

(*, ()) 1 1

R

n r rN N
n r

n nn n

f v v
F I

h h I
F F

ε

−

+

=

= =

= − = −

∑
∑ ∑ , (3.43)

where *

(,)
min ()

s dn n
I M i i

F F I
∈

= , 1
* *

1

() ()
() , ..., N

N

F I F I
h I

F F
= , and *

 times

(1,1,...,1)
N

h =

����� . Because

*

()
1 0n

n

F I

F
− ≤ for all 1,n N= , so we can write that *

1 *
1

()
(, ())

N
n

n n

F I
h h I N

F
ε

=

= −∑ . It can be

observed that function
*

1

()N
n

n n

F I
N

F
=

−∑ has the minimum value for the same I as

function
*

1

()N
n

n n

F I

F
=

∑ , so the component (−N) may be omitted. In this case for the

compromise result h0 the following condition is satisfied (problem CSp=1):

* 0 *
1 1 *

(,) (,)
1

()
(, ()) min (, ()) min

s d s d

N
n

I M i i I M i i
n n

F I
h h I h h I

F
ε ε

∈ ∈

=

= = ∑

(3.44)

Thus, we can solve the problem CSp=1 optimally using the standard Dijkstra’s

algorithm with the following arc metafunction (, ')mf v v :

*
1

(, ')
(, ')

N
n

n n

f v v
mf v v

F
=

=∑ , , ' Gv v A∈

(3.45)

Proof of optimality of such an obtained solution is presented in the next

chapter (with Theorem 3.5). For parameters p>1 it is impossible to obtain

a nonnegative, additive, linear form of an arc function so it is rather impossible to

solve the problem of finding a compromise solution optimally using Dijkstra’s

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

67

algorithm. In such cases the problem can be formulated as a quadratic

programming problem (p=2) or max-ordering problem (p=∞) (Rana & Vickson,

1988; Warburton, 1987; Mote et al., 1991). Method of compromise solutions with

parameter 1 p≤ < ∞ guarantees obtaining nondominated solutions, i.e.

(,)c ND s dI M i i∈ (Ehrgott, 1997; Martins & Santos, 1999).

In chapter 3.3.4.6 we define the CSp=1 problem as a linear programming

problem MOSP_LP1 and MOSP_LP2, problem CSp=2 as MOSP_NP1 and problem

CSp=∞ as MOSP_NP2.

3.3.4.3. Method with a metacriterion function

 In this method we will construct a function, the so-called metacriterion

function, which "merges" all criteria. There are two main approaches to define the

metacriterion function: the first metacriterion function is in the form of a weighted

average of criteria, in the second one we minimize maximal deviations of criteria

values from its "ideal" values (an analogy to compromise the solution with

parameter p=∞).

I. Metacriterion function in the form of weighted average of criterions with weights

αn, 1,n N= is defined as follows (under assumptions that all criteria are

minimized):

*

1

() ()
N

n n
n

MF I F Iα

=

= ⋅∑

(3.46)

1 1

1
* 0

*

(,) (,)

(,)
() ()

()
min () min ()

s d s d

R

n r r
n n r

n

n n n
I M i i I M i i

f v v
F I F I

F I
F F I F I

−

+

=

∈ ∈

= = =

∑
, 1,n N= (3.47)

where: * 0nF > , (,)nf i i describes the n-th arc function of G, : , 1,n Gf A R n N+

→ = , R1

describes the number of nodes belonging to path I. Frequently it is assumed that

weights must satisfy following conditions: (0,1), 1,n n Nα ∈ = ,
1

1
N

n
n

α

=

=∑ . This

guarantees obtaining nondominated solutions, i.e. (),MF ND s dI M i i∈ (Ehrgott, 1997;

Martins et al., 1999).

The problem of finding an optimal solution (problem MF_1) can be

formulated as follows: determine such a (),MF s dI M i i∈ that the following condition

is fulfilled:

(),

() min ()
s d

MF

I M i i
MF I MF I

∈

=

(3.48)

We can solve this problem using the Dijkstra’s algorithm with a single arc

metafunction (, ')mf v v and with a metacriterion function MF(I):

3. Models and Algorithms for Movement Planning

68

*

1

(, ')
(, ')

N
n

n
n n

f v v
mf v v

F
α

=

= ⋅∑ , , ' Gv v A∈

(3.49)

1 1

1
0

() (,)
R

r r
r

MF I mf v v
−

+

=

= ∑ (3.50)

Theorem 3.5

If arc functions f1, f2, ..., fN , : , 1,i Gf A R i N+

→ = are additive then we can solve the

problem (3.48) optimally using the Dijkstra’s algorithm with the arc meta-function (3.49).

In this case the meta-function (3.46) is equal to meta-function (3.50).

Proof :

When functions f1, f2, ..., fN are nonnegative then the function (3.49)

is nonnegative, and when functions f1, f2, ..., fN are additive then the cost of path I is

calculated as a sum of meta-costs of arcs belonging to path I. In this case

assumptions of the Dijkstra’s algorithm regarding the arc function (nonnegativity

and additivity) are satisfied, so we can use this function as the arc function in the

algorithm. Now, we will prove that MF(I)=LF from (3.46) is equal

1 1

1
0

(,)
R

r r
r

mf v v RG
−

+

=

=∑ using (3.50). From (3.46) and (3.47) we obtain:

1

1

1

11
* 0

1* *
1 1 1 0

(,)

() () (,)

R

Rn r rN N N
r n

i i n n r r
i n n rn n

f v v

LF MF I F I f v v
F F

α

α α

−

−+

=

+

= = = =

= = ⋅ = ⋅ = ⋅

∑
∑ ∑ ∑∑ ,

and from (3.49) and (3.50) we obtain

1 1 1() 1 1 1
1

1 1* *
0 0 1 1 0

(,)
(,) (,)

R I R RN N
n r r n

r r n n r r
r r n n rn n

f v v
RG mf v v f v v

F F

α

α

− − −

+

+ +

= = = = =

= = ⋅ = ⋅∑ ∑∑ ∑∑ ,

thus LF=RG.

♦

Let us note that arc function (3.45) is a special case of arc function (3.49) (all 1iα =),

thus, problem (3.44) is a special case of problem (3.48).

The complexity of the algorithm is presented in Theorem 3.6.

Theorem 3.6

Complexity of the modified Dijkstra’s algorithm (with Fibonacci’s heaps) for solving

problem (3.48) using the arc metacriterion function (3.49) is equal

()(log)O N V V A NA+ + .

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

69

Proof:

To calculate the arc metafunction (3.49) for each arc we must firstly solve the ,

shortest path problem N times for each criterion: it takes time proportional to

()(log)O N V V A+ using Dijkstra’s algorithm implemented with Fibonacci’s heaps.

Next, we have to separately calculate the metafunction (3.49) for each arc value; it

takes a proportional time of ()NAΘ for all arcs. Using the Dijkstra’s algorithm

with the arc metafunction (3.49) we calculate the shortest path in a time of

()logO V V A+ , thus the total time of the algorithm for solving problem (3.48) is

equal ()(log)O N V V A NA+ + .

♦

II. Metacriterion function with minimization of maximal deviations of criteria values

from their "ideal" values can be defined using the following temporary function:

1

*
(,) (,)

1

1
0

min () min ()
()

() ()
(,)

s d s dn n
I M i i I M i in

n R

n n
n r r

r

F I F I
F

F I
F I F I

f v v

∈ ∈

−

+

=

= = =

∑
, 1,n N= (3.51)

Let us note that (]() 0,1nF I ∈ , 1,n N= , so the ideal point is equal 1. Now, we

can define the metacriterion function with minimization of maximal deviations of criteria

values from their “ideal” values (problem MF_2) as follows:

 minu → (3.52)

 subject to

1 () , (,)s d
nF I u I M i i− ≤ ∈ (3.53)

Additional variable u describes maximal deviation of values of criteria functions

()nF I from their "ideal" values (i.e. 1). From the condition (]() 0,1nF I ∈ results that

[)0,1u∈ . In chapter 3.3.4.6 we define this problem in details as a mathematical

programming problem (MOSP_NP3).

We will show that the MF_2 problem can be considered as a problem of

finding (1+ε)-shortest path, ε≥0. Constraint 1 ()nF I u− ≤ can be written as follows:

*1
()

1n nF I F
u

≤ ⋅

−

. Taking into account the definition of the vector (1+ε)-dominance

(see (3.22)) we obtain: *() (1)n nF I Fε≤ + ⋅ that is
1

1
1 1

u

u u
ε ε= + ⇒ =

− −

. Hence,

minu → is equivalent to minε → , because ε is an increasing function of u.

Therefore, the MF_2 problem can be solved by finding (1+ε*)-shortest path, where

ε* is the smallest value of ε such that (1+ε)-shortest path exists (we use the

3. Models and Algorithms for Movement Planning

70

following property of the (1+ε)-shortest path: if any path I is the (1+ε)-shortest path

then I is the (1+ε’)-shortest path for each 'ε ε≥). If we set the precision for u to m

decimal places (m is positive and an integer) then the MF_2_half algorithm is

presented below.

Algorithm MF_2_half

 L:=0; R:=10m; u*:=infinity;

 WHILE |L–R|>1 DO

 u’:= L + ceil((R-L)/2); u:=u’/10m; ε:=u/(1-u);

 Determine (1+ε)-shortest path from s1 to t1;

 IF (1+ε)-shortest path from s1 to t1 exists THEN

 R:=u’; u*:=u;

 ELSE

 L:=u’;

 END IF;

 END WHILE;

 RETURN u*;

If we denote with T(ε) complexity of the algorithm of finding the (1+ε)-

shortest path between s1 and t1 (see (Warburton, 1987;

Papadimitriou & Yannakakis, 2000)), then the MF_2_half algorithm has

a complexity ()2log 10 ()mO T ε⋅ (because the idea is similar to binary-searching for

value x in a sorted table with 10m elements, where L and R denote, respectively, the

left and right index of subtable range). For example, let the weighted graph be

given in Fig. 3.12, s1=1, t1=5. The "ideal" vector of the criteria values is

() ()

* * * *
1 2 3, , 6, 5, 2c c c c= = . In the last column of Table 3.8 for each path I from s1=1 to

t1=5 the smallest value of (1+ε) such that *()F I c
ε

≤ is calculated.

Let us set m=1 (we want to calculate u with a precision of one decimal place) for

MF_2_half algorithm. In the first iteration, L=0, R=10, u’=5, u=0.5, ε=1. We see in

Table 3.8 that path (e.g. pA) for which the (1+ε)≤2 exists, hence this path is the

(1+(ε=1))-shortest path from s1 to t1 and R:=5, u*:=0.5. In the second iteration, L=0,

R=5, u’=2, u=0.2, ε=0.25. Because path (e.g. pA) for which (1+ε)≤1.25 exists, hence

this path is the (1+(ε=0.25))-shortest path from s1 to t1 and R:=2, u*:=0.2. In the third

iteration, L=0, R=2, u’=1, u=0.1, ε=1/9. But the (1+(ε=1/9))-shortest path does not

exist, hence L=1, R=2 and exit with u*=0.2.

In chapter 3.3.4.6 we define problem MF_1 as a linear programming problem

(MOSP_LP3) and problem MF_2 as MOSP_NP3.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

71

3.3.4.4. Method with hierarchization of objective functions

 In this approach we order criteria functions according to their importance

(in the set of criteria function we set the lexicographic order), so F1 describes the

most important criterion, F2 – the second criterion according to importance, etc.

Solution (,) (,)h s d s d
j NI M i i M i i
≤

∈ ⊂ is found by solving the sequence of

single-criteria optimization problems starting from the most important criterion

(with index j=1, generating set M1(is,id)), next taking into account the second

criterion according to importance (generating set M2(is,id)), etc. Calculations are

continued as long as we achieve MN or at the previous stage s≤N it occurs that

1SM = . Each Mj set narrows the previously obtained Mj-1 set of acceptable

solutions and it is recurrently defined:

{ }
1

1
(,)

(,) : () min () , for 1,
(,)

(,), for 0

s d
j

s d
j j j j j

s d I M i i
j

s d

I M i i F I F I j N
M i i

M i i j

−

−

∈

 ∈ =
=

= 
 =

 (3.54)

The method of hierarchization of objective functions guarantees obtaining

nondominated solutions, i.e. (,)
h ND s dI M i i∈ (Ehrgott, 1997; Martins et al., 1999).

For example, we considered the lexicographic solution (path) of the problem (3.16)

with vectoral objective function () (), ()F I T I P I= , where P is defined as follows:

()

1 1
1 11 ,

1
1 1

1

1

(,)
1

, ,
1 1 1

(,)

,

((,))

r
r r

k ki i
k

r r k k

r r

r r

R R ri i c
s d

i i i i
r r k

i i t

i i

P I i i e q c

q t e

λ

λ

−

−

=

− −

−

−

− ⋅

= = =

− ⋅

∑  
= =  

 

=

∏ ∏ ∑
 (3.55)

There is an interesting question: how to find a solution in the following order

of criteria (3.29) importance: T, P? Korzan in (Korzan, 1983a) proved (for K=1) that

if inside the set (,)ND s dM i i there exist many shortest paths, according to the

criterion T with the same length T* then all of these have the same value of the P

criterion. Because of this fact any node x with the same value of T on the part of the

path from s1 can be considered at the next step of the Dijkstra’s algorithm. Hence,

we can use Dijkstra’s algorithm with the modifications presented in Table 3.6,

where: d(x) describes the value of function T for the path from s to x, c(x,y) is

equivalent to cx,y , p(x) describes the value of the P function for the path from s1 to

x, q(x,y,z) is equivalent to qx,y(z).

Modification of the Dijkstra’s algorithm (Dijkstra_Lex2) has the same complexity as

the original algorithm (with Fibonacci’s heaps), that is ()logO V V A+ . Generally,

finding lexicographic solutions (paths) is NP-hard (Garey & Johnson, 1979).

3. Models and Algorithms for Movement Planning

72

Table 3.6 Modification of the Dijkstra’s algorithm for finding the lexicographic solution

with T, P objectives

Standard Dijkstra’s algorithm Dijkstra_Lex2 algorithm

Dijkstra(

,G GG V A= , [c(u,v)]VxV, s1, t1)

FOR EACH node v∈VG DO

predecessor[v]:= null;

d[v]:= +infinity;

 d[s1]:= 0;

 Q:= VG;

END FOR;

WHILE Q ≠ null DO

 u:= Extract_Min(Q);

 /u is such a node that

 d[u]= min {d[v]:v∈Q}/

 Q:= Q \ {u};

 IF u=t1 THEN

 RETURN;

 END IF;

 FOR EACH arc (u,v)∈AG

 starting from u DO

 IF d[v]>d[u]+c(u,v) THEN

 d[v]:= d[u] + c(u,v);

 predecessor[v]:= u;

 END IF;

END FOR;

 END WHILE;

Dijkstra_Lex2(

,G GG V A= ,[c(u,v)]VxV,

[q(u,v,z)]VxVxT, s1, t1)

FOR EACH node v∈VG DO

predecessor[v]:= null;

d[v]:= +infinity;

p[v]:= 0;

 p[s1]:=1;

 d[s1]:= 0;

 Q:= VG;

END FOR;

WHILE Q ≠ null DO

 u:= Extract_Min(Q);

 /u is such node that

 d[u]= min{d[v]:v∈Q}/

 Q:= Q \ {u};

 IF u=t1 THEN

 RETURN;

 END IF;

 FOR EACH arc (u,v)∈AG

 starting from u DO

 IF d[v]>d[u]+c(u,v) OR

 (d[v]=d[u]+c(u,v) AND

 p[v]<p[u]*q(u,v,d[v]))

 THEN

 d[v]:= d[u] + c(u,v);

 p[v]:= p[u] * q(u,v,d[v]);

 predecessor[v]:= u;

END IF;

 END FOR;

 END WHILE;

3.3.4.5. Method with threshold values of criteria (Restricted Shortest Path

Problem)

Methods of threshold values (also known as restricted shortest paths problem

(RSPP)) rely on the fact that some criteria functions have fixed critical values and

they narrow the set of acceptable solutions. For example, problem (3.29) could be

written as follows: to determine such a ()
*(,) ,s d s dI i i M i i∈ , that

 () ()
*

(,) (,)
(,) max (,)

s d s d

s d s d

I i i M i i
P I i i P I i i

∈

=

(3.56)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

73

with an additional restriction: () 0(,)s dT I i i T≤ , where T0 – fixed threshold value of

criterion ()T i . Warburton in (Warburton, 1987) showed an 2(log)O V Z V algorithm

for solving the RSPP problem for two objectives (with integer and positive values),

where Z is the upper constraint on the value of the second objective (the first

objective is minimized). In chapter 3.3.4.6 we define the RSPP problem as

mathematical programming problem (MOSP_LP4).

3.3.4.6. Types of the MOSP problems defined as mathematical programming

problems

For K=1 we will use the formulation of the MOSP problem as a linear

programming problem as follows:

 minCx → (3.57)

 subject to

0

Bx d

x

=

≥
(3.58)

Here nj N A
C c

×

 =   is an objective matrix; ij V A
B b

×

 =   is a transition matrix for graph

G and: bij=1 when the j-th arc starts in the i-th node, bij= −1 when the j-th arc ends

in the i-th node, bij=0 otherwise; []
1i V

d d
×

= is a column vector, which may have

three values: di=1 when i=is, di=−1 when i=id; otherwise di=0;
1j A

x x
×

 =   ,

{0}jx R+

∈ ∪ ; "min" describes minimum in the vectoral sense (in the sense of RD

relation). Each of the i-th node, 1,i V= has its equivalent in the VG set, each of the

 j-th arc, 1,j A= has its equivalent in the AG set and each cnj cost for the j-th arc has

its equivalent in the value of the arc function fn(v,v’), , ' Gv v A∈ . For the case of

N=1, we have a classical definition of the shortest path problem as a linear

programming problem (because of the total unimodularity of matrix B and vector

d). Sometimes, we will use the extended, equivalent form of the problem

(3.57)-(3.58):

1

min, 1,
A

nj j
j

c x n N
=

→ =∑

(3.59)

 subject to

1

, 1,

0, 1,

A

ij j i
j

j

b x d i V

x j A

=

= =

≥ =

∑

(3.60)

3. Models and Algorithms for Movement Planning

74

 The problem of finding a compromise solution with parameter p=1, however

nonlinear in its nature, can be formulated as a linear programming problem. Using

notations from (3.59)-(3.60) the metrics (3.32) can be written as follows:

*
1 1

1
1 min

N A

nj j
n jn

c x
c

= =

− →∑ ∑ (3.61)

where * *
n nc F≡ . Let us accept following notations:

*
1

1
max 0,1 , 1,

A

n nj j
jn

z c x n N
c

=

  
= − = 

  
∑ (3.62)

*
1

1
max 0, 1 , 1,

A

n nj j
jn

z c x n N
c

=

  
= − = 

  
∑ (3.63)

Then for each 1,n N= the following conditions are fulfilled:

*
1

1
1

A

n nnj j
jn

c x z z
c

=

− = +∑

(3.64)

*
1

1
1

A

n nnj j
jn

c x z z
c

=

− = −∑ (3.65)

0, 0, 0n n n nz z z z≥ ≥ ⋅ =

 (3.66)

For this reason we obtain the following linear programming problem (MOSP_LP1):

1

 min
N

n n

n

z z
=

+ →∑ (3.67)

 subject to

*
1

1
1 , 1,

A

n nnj j
jn

c x z z n N
c

=

− = − =∑

(3.68)

0, 0, 0, 1,n n n nz z z z n N≥ ≥ ⋅ = = (3.69)

and (3.60)

We may omit conditions 0, 1,n nz z n N⋅ = = , but it can be shown that it does not

extend the set of optimal solutions. The presented problem can be solved using the

simplex algorithm. But the problem can be of large scale (number of variables

equals N+A, number of boundaries equals N+V) and effectiveness of solving of this

problem (using a simplex or ellipsoidal algorithm) is rather unacceptable.

 According to the discussion conducted in chapter 3.3.4.2 and formula (3.44)

the CSp=1 problem can be also defined as follows (MOSP_LP2):

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

75

*
1 1

1
min

N A

nj j
n jn

c x
c

= =

→∑ ∑ (3.70)

subject to (3.60).

 The CSp=2 problem of finding a compromise solution with parameter p=2

(MOSP_NP1):

2

*
1 1

1
1 min

N A

nj j
n jn

c x
c

= =

 
− → 

 
∑ ∑ (3.71)

subject to (3.60). Unfortunately, the criterion function causes that the problem is

nonlinear.

 The CSp=∞ problem of finding a compromise solution with parameter p=∞

(MOSP_NP2), known as the max-ordering problem can be defined as follows:

*{1,..., }
1

1
max 1 min

A

nj j
n N

jn

c x
c∈

=

− →∑ (3.72)

subject to (3.60). The "max" in the criterion function causes that the problem is

nonlinear. However, the problem can be formulated as linear (minu → , subject to:

 , {1,..., }n nz z u n N+ ≤ ∀ ∈ , where , n nz z defined in (3.62) and (3.63)).

 The method with the metacriterion function of type I (MOSP_LP3) is defined

as follows:

*
1 1

min
N A

n
nj j

n jn

c x
c

α

= =

→∑ ∑ (3.73)

subject to:
1

1
N

n
n

α

=

=∑ , 0, 1,n n Nα ≥ = and (3.60).

 To define the MOSP problem with the metacriterion function of type II, let us

note that function ()nF I from (3.51) is equivalent to
*

1

n
A

nj j
j

c

c x
=

∑
, hence we obtain

(MOSP_NP3):

minu → (3.74)

 subject to

*

1

1 , 1,n
A

nj j
j

c
u n N

c x
=

− ≤ =

∑
 (3.75)

and (3.60).

The first type of constraint causes that the problem is nonlinear.

3. Models and Algorithms for Movement Planning

76

 The method with critical values of criteria (MOSP_LP4) known also as the

restricted shortest path problem can be formulated as follows:

1

min
A

Lj j
j

c x
=

→∑ (3.76)

 subject to

1

, 1, ,
A

ij j i
j

c x g i N i L
=

≤ = ≠∑ (3.77)

and (3.60)

where ()1 , , ...,i N i L
g g g g

≠

= describes the threshold values of each of the criteria, and

L denotes the index of the criterion to minimize. Let us note that if any component

of g is not an integer then the constraint 0, 1,jx j A≥ = must be replaced by

{0,1}, 1,jx j A∈ = .

In Table 3.7 we present properties of the MOSP problems formulated as

mathematical programming problems.

Table 3.7. Properties of the MOSP problems formulated as mathematical programming problems

Problem Type of mathematical

programming problem

Number of

decision variables

Number of

constraints

MOSP_LP1 Linear 2N+A V+N

MOSP_LP2 Linear A V

MOSP_LP3 Linear A V

MOSP_LP4 Linear A V+N-1

MOSP_NP1 Nonlinear A V

MOSP_NP2 Nonlinear A V

MOSP_NP3 Nonlinear A+1 V+N

3.3.4.7. Example of the GAMS model for the MOSP_LP3 problem

The source code of the the GAMS3 model for solving the MOSP_LP3 problem

(the first row in Table 3.9, equation (3.73) and (3.60)) for the G graph from Fig. 3.12

is presented below. We set the following equivalence between notations being

used in the MOSP_LP3 model and in the source code of the GAMS model (notation

x≡y describes that x in the GAMS model is equivalent to y in the MOSP_LP3

model): c(n,j) njc≡ , b(i,j) ijb≡ , *c_opt(n) nc≡ , alfa(n) nα≡ , x(j) jx≡ , d(i) id≡ .

3 General Algebraic Modelling System (Rosenthal, 2010).

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

77

Sets

i nodes of the graph G

/1, 2, 3, 4, 5/

j arcs of the graph G

/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/

n criteria

/1, 2, 3/

Parameters

c(n,j) cost matrix of the graph G;

c('1','1')= 1;

c('1','2')= 3;

c('1','3')= 5;

c('1','4')= 3;

c('1','5')= 2;

c('1','6')= 4;

c('1','7')= 2;

c('1','8')= 6;

c('1','9')= 3;

c('1','10')= 2;

c('2','1')= 3;

c('2','2')= 4;

c('2','3')= 2;

c('2','4')= 2;

c('2','5')= 4;

c('2','6')= 2;

c('2','7')= 3;

c('2','8')= 2;

c('2','9')= 2;

c('2','10')= 5;

c('3','1')= 1;

c('3','2')= 1;

c('3','3')= 1;

c('3','4')= 1;

c('3','5')= 1;

c('3','6')= 1;

c('3','7')= 1;

c('3','8')= 1;

c('3','9')= 1;

c('3','10')= 1;

Parameters

b(i,j) element of transition matrix for graph G;

* =1 - when the arc number j starts in the i-th node

* =-1 - when the arc number j ends in the i-th node

* =0 - otherwise;

b('1','1')= 1;

b('1','2')= 1;

b('1','3')= 1;

b('2','1')= -1;

b('2','4')= 1;

b('2','7')= -1;

b('2','8')= 1;

3. Models and Algorithms for Movement Planning

78

b('3','2')= -1;

b('3','4')= -1;

b('3','6')= -1;

b('3','5')= 1;

b('3','7')= 1;

b('3','9')= 1;

b('4','3')= -1;

b('4','5')= -1;

b('4','6')= 1;

b('4','10')= 1;

b('5','8')= -1;

b('5','9')= 1;

b('5','10')= 1;

Parameters

c_opt(n) optimal value of the n-th criteria function;

c_opt('1')= 6;

c_opt('2')= 5;

c_opt('3')= 2;

Parameters

alfa(n) weight of the n-th criteria function;

alfa('1')= 1/3;

alfa('2')= 1/3;

alfa('3')= 1/3;

Parameters

d(i) parameter to set source and destination nodes;

* = 1 for source node,

* =-1 for destination node,

* =0 otherwise;

d('1')= 1;

d('2')= 0;

d('3')= 0;

d('4')= 0;

d('5')= -1;

Variables

x(j)

z;

Positive variable x;

Equations

objective objective function (3.73)

subj(i) condition (3.60);

objective.. z =e= sum((n,j), (alfa(n)/c_opt(n))*c(n,j)*x(j));

subj(i).. sum(j,x(j)*b(i,j))=e=d(i);

Model mosp_lp3 /all/ ;

option limrow=16;

*number of rows in output file

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

79

option reslim=10000;

*10000 seconds for calculations;

option iterlim=100000000;

* upper bound on iteration numbers

option lp=Cplex;

* solver Cplex

solve mosp_lp3 using lp minimizing z;

display x.l, z.l;

By solving this model using the GAMS/CPLEX 12.2 solver we obtain:

x(1)=x(8)=1 (values of x variable for remaining parameters are equal 0), and the

value of the objective function equals 1.055 (see also Table 3.9).

3.3.5. Numerical Examples and Analysis

In Fig. 3.12 we present a graph, which will be used as a running example of

defined the MOSP problems with three-dimensional vector of costs (Tarapata,

2007d). Values of all functions are minimized.

In Table 3.8 we present the set of paths from s1=1 to t1=5 for the graph from

Fig. 3.12 and their multidimensional properties. In the last row of the table optimal

costs for each of the objectives are presented (* (6, 5,2)c =). In the last column of

Table 3.8 for each of the path I from s1=1 to t1=5 the smallest value of (1+ε) such

that *()F I c
ε

≤ is calculated. For example, for pA we have: 1+ε=max{7/6, 5/5,

2/2}=7/6. Table 3.9 contains optimal multidimensional paths for the graph from

Fig. 3.12 (s1=1, t1=5) using different types of the defined MOSP problems.

1

2

3

4

5

1

(1,3,1)

3

(5,2,1)

2

(3,4,1)

7

(2,3,1)
4

(3,2,1)

6

(4,2,1)

5

(2,4,1)

8

(6,2,1)

10

(2,5,1)

9

(3,2,1)

Fig. 3.12. Exemplified graph with multidimensional costs: on top of each arc its number is described

and on the bottom − three-component arc cost

3. Models and Algorithms for Movement Planning

80

Table 3.8. Set of paths from s1=1 to t1=5 for the graph from Fig. 3.12 and their multidimensional

properties

Path name I Path as a sequence of nodes Cost vector F(I) of path 1+ε

pA 1-2-5 (7, 5, 2) 7/6

pB 1-2-3-5 (7, 7, 3) 3/2
pC 1-2-3-4-5 (8, 14, 4) 14/5

pD 1-3-5 (6, 6, 2) 6/5

pE 1-3-2-5 (12, 8, 3) 12/6

pF 1-3-4-5 (7, 9, 3) 9/5
pG 1-4-5 (7, 7, 2) 7/5

pH 1-4-3-5 (12, 6, 3) 12/6

pI 1-4-3-2-5 (17, 9, 4) 17/6

Vector of optimal costs: * * *

1 2 3
6, 5, 2c c c= = =

Table 3.9. Optimal multidimensional paths for the graph from Fig. 3.12 (s1=1, t1=5)

Problem Optimal path Cost of path

MF_1, 1/3, 1,3n nα = =

⇔ MOSP_LP3 pA 1.055

MF_1,
1 2 3

0.66, 0.17, 0.17α α α= = =

⇔ MOSP_LP3 pD 1.034

CSp=1 ⇔ MOSP_LP2 pA 3.167

RSPP⇔MOSP_LP4, L=1, g2=
*

2
1.2c , g3=

*

3
1.2c pD 6.0

RSPP⇔MOSP_LP4, L=1, g2=
*

2
1.1c , g3=

*

3
1.1c pA 7.0

RSPP⇔MOSP_LP4, L=1, g2=
*

2
c , g3=

*

3
c null +infinity

CSp=2 ⇔ MOSP_NP1 pA 0.139

CSp=∞
 ⇔ MOSP_NP2 pA, pD 0.333

MOSP_NP3 pA u=1/6

In Fig. 3.13, Fig. 3.14 and Fig. 3.15 we present weighted terrain-based grid

graphs with a dimension of 50×200 nodes (squares) representing the

neighbourhood of Radom, Poland. Each of the graphs has an arc count of A≈3,95V,

because only north-east-south-west moves are permitted from a node. Such graphs

represent a model of the battlefield in a computer simulation game (Tarapata,

2003a). For this example, each terrain square has a size of 200×200m, so graphs

represent a piece of terrain with a dimension of 10×40km. Colours represent values

of criteria: c1 for Fig. 3.13 − the light colour of the node (square) describes open

terrain (well passable), the dark colour describes obstacles (forests, lakes, rivers,

buildings): the darkest is the colour of least passable terrain; c2 for Fig. 3.14 − the

colour of the node (square) describes ability to camouflage: the darker the colour,

the smaller the ability to camouflage; c3 for Fig. 3.15 − values of criterion c3 equals 1

for all nodes. The white colour on all figures describes the optimal path from the

left-top corner to the right-bottom. Let us note that finding the optimal path in

a sense of: c1 gives the fastest path, c2 gives the best "camouflaged" path, c3 gives

the shortest geometric path (with north-east-south-west moves only from a given

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

81

node). Without loss of generality we can assume that functions c1, c2, c3 are

described on the nodes (squares) instead of arcs (if it is necessary to obtain a graph

with arc functions we can construct a dual graph ,GT GTGT V A= to the considered

graph ,G GG V A= , where GT GV A= and each arc (,) GT G Ga b A A A∈ ⊂ × is created

when two arcs a, b in G have a common node (are simultaneously adjacent with

any node); then in GT functions c1, c2, c3 are described on arcs).

 In Table 3.10 we present experimental results of average running times (in

seconds) of the modified Dijkstra’s algorithm and the GAMS/CPLEX 12.2 for the

MF_1 problem (αi=1/N, i=1,…,N). Graphs with a node count of 1000*x

(x=1,2,…,10) are cut from the graph with 50×200 nodes (Fig. 3.13, Fig. 3.14,

Fig. 3.15) and have a dimension of 50×(20*x) nodes.

Fig. 3.13. Weighted terrain-based grid graph with a dimension of 50x200 nodes (squares). Colour

represents value of criterion c1: the light colour of the nodes (square) describe open terrain, the dark

colour describes obstacles (forests, lakes, rivers, buildings). The white colour describes the optimal

path from the left-top to the right-bottom corner

Fig. 3.14. Weighted terrain-based grid graph with a dimension of 50x200 nodes (squares). Colour

represents value of criterion c2: the colour of the node (square) describes the ability to camouflage:

the darker the colour the smaller the ability to camouflage. The white colour describes the optimal

path from the left-top to the right-bottom corner

3. Models and Algorithms for Movement Planning

82

Fig. 3.15. Weighted terrain-based grid graph with a dimension of 50x200 nodes (squares). All

weights are identical (the c3 criterion value equals 1). The white colour describes the optimal path

from the left-top to the right-bottom corner

 We can see a clear advantage of the modified Dijkstra’s algorithm with

relation to CPLEX 12.2 solving the MF_1 problem as a linear programming

problem MOSP_LP3: using the modified Dijkstra’s algorithm with its fast

implementations is time-effective. It is especially visible in Fig. 3.16 where we

present a decimal logarithm of the average running times (in milliseconds) of these

two algorithms.

Table 3.10. Average running times (in seconds) of the modified Dijkstra’s algorithm and the

GAMS/CPLEX 12.2 solver for the MF_1 problem (αi=1/N, i=1,…,N)

Count of nodes
(V)

Modified Dijkstra’s
alg.

MF_1 solved as MOSP_LP3

N=1 N=2 N=3 N=1 N=2 N=3
1 000 0.03 0.08 0.11 0.76 2.31 4.39

2 000 0.10 0.29 0.38 2.82 8.81 12.40

3 000 0.25 0.71 0.96 6.52 21.20 29.14

4 000 0.37 1.10 1.47 16.40 52.55 72.30

5 000 0.59 1.74 2.33 30.41 98.12 136.22

6 000 0.86 2.55 3.42 50.79 161.94 225.67

7 000 1.16 3.44 4.59 74.61 238.27 333.80

8 000 1.55 4.57 6.12 109.24 348.13 483.76

9 000 1.96 5.82 7.77 134.78 432.47 620.94

10 000 2.43 7.24 9.66 179.61 564.42 790.97

Fig. 3.17 presents dependencies between the average running times (in

milliseconds) of the GAMS/CPLEX 12.2 solver and the beta coefficient for solving

the MOSP_LP4 problem for two graphs with V=1 000 (50×20) and V=2 000 (50×40)

nodes. In the MOSP_LP4 problem we minimize the c1 criterion subject to upper

constraints (g2 and g3) on values of criteria c2 and c3 as follows: *
2 2g beta c= ⋅ and

(g3=infinity, *
3 3g beta c= ⋅), where *

2 6 964c = and *
3 68c = for V=1 000; *

2 6 061c = and

*
3 88c = for V=2 000.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

83

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Count of nodes (V)

1

2

3

4

5

6

D
e

c
im

a
l
lo

g
a

ri
th

m
 o

f
ru

n
n

in
g

 t
im

e
 [
m

s
]

 N=1, MDijk
 N=2, MDijk
 N=3, MDijk
 N=1, LP
 N=2, LP
 N=3, LP

Fig. 3.16. Decimal logarithm of average running times (in milliseconds) of the modified Dijkstra’s

algorithm (MF_1 problem�MDijk) and the GAMS/CPLEX 12.2 (MOSP_LP3 problem�LP)

(αi=1/N, i=1,…,N)

1,05 1,1 1,15 1,2 1,25 1,3 1,35 1,4 1,45 1,5

Multiplication coefficient "beta" for c *

2,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

6,5

D
e
c
im

a
l
lo

g
a
ri

th
m

 o
f

ru
n
n
in

g
 t

im
e
 [

m
s
]

 V=1000, g2

 V=1000, g2,g3

 V=2000, g2

 V=2000, g2,g3

Fig. 3.17. Decimal logarithm of average running times (in milliseconds) of the GAMS/CPLEX 12.2

solver solving the MOSP_LP4 problem for two graphs with V=1 000 and V=2 000 nodes,
*

2 2g beta c= ⋅ and (
3 infinityg = , *

3 3g beta c= ⋅)

In Fig. 3.18 we present dependencies between values of the objective function

and beta coefficient for the MOSP_LP4 problem. Let us note that, generally, the

greater the value of beta the smaller running time of the model in the

GAMS/CPLEX 12.2 solver (and the smaller value of the objective functions,

Fig. 3.18), but the functions from Fig. 3.17 are not monotonic. The values of the

3. Models and Algorithms for Movement Planning

84

running times for the MOSP_LP4 problem are few times greater than for the

MOSP_LP3 problem solved using the GAMS/CPLEX 12.2 solver (compare

Fig. 3.17 and Fig. 3.16). For example, the running time for V=2 000 is about

105/102.8 times greater than for solving the MOSP_LP3 problem. These results are

clear: the smaller restrictions on criteria c2 and c3 (that means: the greater value of

beta) the smaller running time. Moreover, the greater value of the running time

results from the fact that *

i ig beta c= ⋅ is not an integer (except for beta=1.25 and

beta=1.5 for *
2 6 964c = , V=1 000) and MOSP_LP4 (as a linear programming

problem) becomes harder to solve the binary programming problem. For the

beta≥1.35 value of the objective function (based on c1) does not change, because it

achieves an optimal value (*
1 605c = for V=1 000, *

1 713c = for V=2 000).

1,05 1,1 1,15 1,2 1,25 1,3 1,35 1,4 1,45 1,5

Multiplication coefficient "beta" for c *

600

800

1000

1200

1400

1600

1800

2000

2200

2400

V
a
lu

e
 o

f
o
b
je

c
ti
v
e
 f

u
n
c
ti
o
n
 f

o
r

o
p
ti
m

a
l
s
o
lu

ti
o
n

 V=1000, g2

 V=1000, g2,g3

 V=2000, g2

 V=2000, g2,g3

Fig. 3.18. Values of objective functions for the MOSP_LP4 problem for two graphs with V=1 000 and

V=2000 nodes, *
2 2g beta c= ⋅

and (
3 infinityg = , *

3 3g beta c= ⋅)

3.4. Disjoint Paths Planning (DP)

3.4.1. Description of the Problem

The disjoint paths (DP) problem is a well-known network optimization

problem. The problem relies on such determining paths for a few objects that no

common part of paths for objects (arcs or nodes belonging to paths) are accepted.

There are two classification categories of the problem: (DP1) from the point of view

of paths disjointness type; (DP2) from the point of view of source and destination

type. In the (DP1) category the problem is divided into two subproblems: (DP1.1)

arc-disjoint paths (no common arcs are accepted) and (DP1.2) node-disjoint paths

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

85

(no common nodes are accepted; in selected cases, common source and destination

nodes can be accepted). It is easy to note that the following sentence is true: if two

(or more) paths are node-disjoint then they are arc-disjoint as well. Reverse relation

can not be true. In the (DP2) category the problem is divided into a few

subproblems: (DP2.1) from a single source to a single destination; (DP2.2) from

a single source to a set of destination ones; (DP2.3) from a set of sources to

a single destination; (DP2.4) from a set of sources to a set of destinations; (DP2.5)

from a vector of sources to a vector of destinations. What is the difference between

these models? When we have K-component vectors of sources (1 2, , ..., Ks s s s=)

and destinations (1 2, , ..., Kt t t t=) then we must find disjoint paths from s1 to t1 and

from s2 to t2, and from s3 to t3, etc., hence the K disjoint paths between K pairs of

nodes. When we have K-element sets of sources and destinations we must find K

disjoint paths between any of the sources and destinations. In general, the case

with the vector of sources and/or destinations is more complicated to solve then

with a set of them.

The disjoint paths problem may be related to the following practical

applications: VLSI layout designing (Aggarwal et al., 2000), routing in

telecommunication networks (in particular: optical) (Aggarwal et al., 2000; Ahuja et

al., 1993; Andersen et al., 2004; Bhandari, 1999; Jongh et al., 1999; Li et al., 1992;

Perl & Shiloach; 1978, etc.), manoeuvre (transport) planning of military

detachments (or vehicles) (Tarapata, 1998; 2008e; 2009a; Tarapata & Wroclawski,

2010g; 2011d), tasks scheduling (trasmission) in a parallel or a distributed

computing system (Tarapata, 1999a; 2000e), couriers problem (Tarapata, 1998). For

example, in military applications, to increase redeployment safety, it is often

required that paths for moved objects (convoys) should be independent (disjoint).

These disjoint paths condition results from the fact, that during convoy

redeployment the potential opponent may try to destroy structure elements of the

network (for example, crossings (node of the network) or parts of the road, bridges

(arcs of the network)) as well as convoys being redeployed to make impossible the

achievement destinations and intended goals by the convoys.

It is known (Even et al., 1976; Perl & Shiloach; 1978) that the optimization

problem for finding K>1 shortest disjoint paths between K pairs of distinct nodes

(DP2.5 problem) is NP-hard (even for K=2). The problem of finding two or more of

disjoint paths between specified pairs of terminals (network nodes) has been well

studied. The first significant result in this subject has been presented in (Suurballe,

1974). Presented in this paper is the algorithm for the single source – single

destination case having a complexity of O(Alog(1+A/N)V), where V – number of

network nodes, A – number of network arcs. This procedure solved the problem as

a special case of a minimum-cost network flow problem using two efficient

implementations of the Dijkstra’s single–source shortest path algorithm. An

3. Models and Algorithms for Movement Planning

86

efficient algorithm to solve the problem for the single–source all destinations

node–disjoint paths was given in (Suurballe & Tarjan, 1984). In this study, the

disjoint pairs of paths from the source node to all the other nodes in the network

are determined using a single Dijkstra–like calculation to derive an algorithm

having a time complexity of O(Alog(1+A/V)V). Perl and Shiloach (Perl & Shiloach;

1978) studied the complexity of finding two disjoint paths between two different

sources and two different destinations in directed acyclic graphs (DAGs). They

proposed an algorithm, which is easily generalized in finding the shortest pair of

paths (measured by the total path length) or finding tuples of d disjoint paths

between distinct specified terminals; in the latter case the running time would

become O(AVd-1). The author of the paper (Eppstein, 1995) considered the problem

of finding pairs of node-disjoint paths in DAGs, either connecting two given nodes

to a common ancestor, or connecting two given pairs of terminals. He showed how

to find the K pairs with the shortest combined length in a time of O(AV+K). He also

showed how to count all such pairs of paths in O(AV) arithmetic operations. These

results can be extended to finding or counting tuples of d disjoint paths in a time of

O(AVd-1+K) or O(AVd-1). Authors of the paper (Li et al., 1990) give

a pseudo-polynomial algorithm for an optimization version of the two-path

problem, in which the length of the longer path must be minimized. In the other

paper of these authors (Li et al., 1992) the difficult bifurcated routing problem was

described. They solved the problem when each path corresponds to the routing of

a different commodity so that each arc is endowed with a cost depending on the

path to which it belongs. In the paper (Jongh et al., 1999) the problem of finding

two node disjoint paths with minimum total cost in the network was studied, in

which a cost is associated with each arc or edge and a transition cost is associated

with each node. This last cost is related to the presence of two technologies on the

network and is incurred only when a flow enters and leaves the corresponding

node or arcs of different types. A good study for a very important problem of

finding disjoint paths in planar graphs was presented in paper

(Schrijver & Seymour, 1992). A very interesting approach to the time-dependent

shortest pair of disjoint paths problem was discussed in (Sherali et al., 1998). In

(Tarapata, 1997; 1998; 1999a; 2000e) a new approach to the K disjoint path problem

was proposed: it is based on building, starting from the initial network, the

so-called K-nodes (K-dimensional vectors of network nodes), K-arcs and "virtual"

K-network, and finding in such a K-network the shortest K-path (K-dimensional

vector of simple paths) using the original Dijkstra-like algorithm. The specific

problem has been considered in the papers. It deals with the parallel or distributed

computing system, in which we want to send (or process), in generality, K (K>1)

tasks from the Ks (Ks=1 or Ks=K) computer-nodes (local servers) to the Kd (Kd=1 or

Kd=K) destination ones through disjoint paths to minimize sending (or processing)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

87

the time of all tasks and simultaneously to ensure task sending (or processing) on

the most reliable paths (when the elements of the network structure are unreliable).

One of the methods being proposed to solve the problem is finding the best paths

for K objects iteratively using methods for finding the m-th (1st, 2nd, etc.) best path

for each of the K objects (Eppstein, 1999) and visiting specified nodes (Ibaraki,

1973). Parallelization of the method is presented in (Tarapata, 2000a).

3.4.2. Definition of the Problem

3.4.2.1. Formulation of the node-disjoint paths visiting specified nodes problem

The mesh graph, which is the basic data for the problem can model, for

example, regular grid of terrain squares used to plan off-road (cross-country)

movement (see Fig.2.3b). This grid divides the terrain space into squares of equal

size. Each square is homogeneous from the point of view of terrain characteristics

(dimensions, degree of slowing down the velocity, ability to camouflage, degree of

visibility, etc.). The structure of such a terrain can be represented by a "mesh"

digraph ,G GG V A= , VG − set of graph nodes (VG describes the centre of terrain

squares), AG – set of graph arcs, AG⊂VG×VG , A= GA . Arcs are allowed between

geographically adjacent squares only (see Fig.2.3b).

To define the considered problem let us accept the following descriptions:

1 2, , ..., Ks s s s= − vector of source nodes, 1 2, , ..., Kt t t t= − vector of destination

nodes, []ink V M K
a

× ×

=A − matrix of source and destination nodes via indirect nodes

for each object (a path for each object is divided into M=N+1 parts (segments) from

one node to other indirect nodes, N − number of indirect nodes): aink=1 if the i-th

node is the n-th source node for the k-th object, aink=-1 if the i-th node is the n-th

destination node for the k-th object; aink=0 otherwise; additionally, the following

conditions must be satisfied: ai1k=1⇔i=sk (it means that node sk must be the source

node of the first segment of the path for the k-th object), ai1k=-1⇔i=i1(k) (the first

indirect node i1(k) for the k-th object is the destination node for the first segment of

the path for this object), aiMk=1⇔ i=iN(k) (the last indirect node iN(k) for the k-th

object is the source node for the last segment of the path for this object),

aiMk=-1⇔i=tk, (node tk is the destination node of the last segment of the path for the

k-th object), (1)
{1,..., }

1 1ink i n k
n N

a a
+

∈

∀ = − ⇒ = (the destination node of the n-th path

segment for the k-th object is, simultaneously, the source node of (n+1)-st segment

for this path); []ik V K
h

×

=H − matrix of nodes (generating subgraphs of G), which are

allowed to be taken into account during paths determination for each object: hik=1

if the i-th node can be taken into account during paths determining for the k-th

object, hik=0 - otherwise (in particular: i=sk⇒hik=1, i=tk⇒hik=1); ij V A
out

×

 =  OUT −

3. Models and Algorithms for Movement Planning

88

binary crossing matrix of arcs starting in nodes of G: outij=1 if the j-th arc starts in

the i-th node, outij=0 - otherwise; ij V A
in

×

 =  IN − binary crossing matrix of arcs

ending in nodes of G: inij=1 if the j-th arc ends in the i-th node, inij=0 − otherwise;

1j A
d

×

 =  D − vector of arcs’ cost; jnk A M K
x

× ×

 =  X − decision variables matrix, xjnk=1

if the j-th arc of G belongs to the n-th segment of the path for the k-th object,

otherwise xjnk=0 .

We can formulate two problems (NDRP-Sum and NDRP-Max, both are

a modification of the DP2.5 problem), which differ in the objective function. The

first one (NDRP-Sum) minimizes the total cost of all (K) disjoint paths visiting

specified nodes in the restricted area and the second one (NDRP-Max) minimizes

the maximal cost of any of the K disjoint paths.

The optimization NDRP-Sum problem of determining the K shortest node-disjoint

paths via some indirect nodes in the restricted area can be defined as follows:

1 1 1

min
A M K

j jnk
j n k

d x
= = =

→∑∑∑ (3.78)

 with constraints:

()

1

, 1, , 1, , 1,
A

ij ij jnk ink
j

out in x a i V n M k K
=

− = = = =∑ (3.79)

1 1 1

1, 1,
A M K

ij jnk
j n k

out x i V
= = =

≤ =∑∑∑ (3.80)

1 1 1

1, 1,
A M K

ij jnk
j n k

in x i V
= = =

≤ =∑∑∑ (3.81)

1 1

, 1, , 1,
A M

ij jnk ik
j n

out x h i V k K
= =

≤ = =∑∑ (3.82)

1 1

, 1, , 1,
A M

ij jnk ik
j n

in x h i V k K
= =

≤ = =∑∑ (3.83)

0, 1, , 1, , 1,jnkx j A n M k K≥ = = = (3.84)

The objective function (3.78) describes the total cost of K disjoint paths, which is

minimized. The first constraint (3.79) assures that for each node (excluding the

source and destination nodes), for each object and for each path segment, the sum

of arcs starting from the node and the sum of arcs ending at the node, which are

selected to the path is the same (further constraints assure that this value is ≤1). For

the source node this difference is equal 1 (only the single path segment can start at

the source node) and for the destination node -1 (only the single path segment can

end at the destination node). Constraints (3.80) and (3.81) supplement constraint

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

89

(3.79) to assure that for each node only, at least one arc starting and ending at that

node can belong to any path. Constraints (3.82) and (3.83) guarantee that only

allowed nodes are on the path for the k-th object (definition of the restricted area).

Additionally, it can be observed that the matrix of constraint coefficients (built on

the basis of the left sides of the constraints (3.79)-(3.83)) is totally unimodular

(proof of this property is presented in (Tarapata, 2007a)) and aink, hik (right sides)

are integer, hence we can obtain the continuous linear programming problem

(instead of the binary linear programming) and constraint (3.84) (instead xjnk

∈{0,1}). In the presented optimization problem we have the AMK decision

variables and V(MK+K+2) constraints (excluding (3.84)). Let us note that we could

use transition matrix ij V A
B b

×

 =   of graph G (defined in chapter 3.3.4.6) instead of

the semi-transition matrices OUT and IN. In such a case we could have the

following constraints:

(3.79) =>
1

A

ij jnk ink
j

b x a
=

=∑ , (3.80) =>
1 1 1

1
A M K

ij jnk
j n k

b x
= = =

≤∑∑∑ , (3.81) =>
1 1 1

1
A M K

ij jnk
j n k

b x
= = =

≥ −∑∑∑ ,

(3.82) =>
1 1 1

A M K

ij jnk ik
j n k

b x h
= = =

≤∑∑∑ , (3.83) =>
1 1 1

A M K

ij jnk ik
j n k

b x h
= = =

≥ −∑∑∑ .

Matrices OUT and IN have been used because of computational reasons without

increasing computational complexity of the problem.

 The NDRP-Max problem can be formulated similarly to the NDRP-Sum

problem, excluding the objective function, which has a form:

{1,..., }
1 1

max min
A M

j jnk
k K

j n

d x
∈

= =

→∑∑ (3.85)

and with constraints (3.79)-(3.84).

Unfortunately, the function (3.85) is nonlinear and the NDRP-Max problem is

nonlinear. We can use the equivalent formulation of the problem to avoid its

nonlinearity:

minu → (3.86)

with constraints:

1 1

, 1,
A M

j jnk
j n

d x u k K
= =

≤ =∑∑ (3.87)

 and (3.79)-(3.84).

Formulation (3.86)-(3.87) of the NDRP-Max problem makes it a linear

programming problem.

3. Models and Algorithms for Movement Planning

90

3.4.2.2. Example of the GAMS model for the NDRP-Sum problem

Below we present the GAMS model for the K=2 NDRP-Sum problem from

s=(1,2) to t=(7,8) in graph G from Fig. 3.19.

Fig. 3.19. Graph G for the K=2 disjoint paths GAMS model: on top of each arc its number is

described and on the bottom − arc cost

We set the following equivalence between notations being used in model of

the NDRP-Sum problem (defined by (3.78)-(3.84)) and in the source code of the

GAMS model (notation x≡y describes that x in the GAMS model is equivalent to y

in the NDRP-Sum model): d(j) jd≡ , out(i,j) ijout≡ , in(i,j) ijin≡ , a(i,n,k) inka≡ ,

x(j,n,k) jnkx≡ .

Sets

i set of nodes of graph G

/1, 2, 3, 4, 5, 6, 7, 8/

j set of arcs of graph G

/1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22/

k set of objects (paths)

/1, 2/

n set of indirect nodes

/1, 2/

Parameters

d(j) arcs cost vector;

 d('1')= 1 ;

 d('2')= 1;

 d('3')= 3 ;

 d('4')= 3 ;

 d('5')= 4 ;

 d('6')= 4 ;

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

91

 d('7')= 2 ;

 d('8')= 2 ;

 d('9')= 1 ;

 d('10')= 1;

 d('11')= 1 ;

 d('12')= 1 ;

 d('13')= 6 ;

 d('14')= 6 ;

 d('15')= 4 ;

 d('16')= 4 ;

 d('17')= 3 ;

 d('18')= 3 ;

 d('19')= 2 ;

 d('20')= 2;

 d('21')= 1;

 d('22')= 1;

Parameters

out(i,j) binary crossing matrix of arcs starting in nodes of G;

* 1 - if the j-th arc starts in the i-th node

* 0 - otherwise;

out('1','1')= 1 ;

out('1','3')= 1 ;

out('2','5')= 1 ;

out('2','7')= 1 ;

out('3','2')= 1 ;

out('3','10')= 1 ;

out('3','13')= 1 ;

out('4','9')= 1 ;

out('4','15')= 1 ;

out('4','17')= 1 ;

out('4','19')= 1 ;

out('4','12')= 1 ;

out('4','6')= 1 ;

out('4','4')= 1 ;

out('5','9')= 1 ;

out('5','11')= 1 ;

out('5','21')= 1 ;

out('6','14')= 1 ;

out('6','16')= 1 ;

out('7','18')= 1 ;

out('8','20')= 1 ;

out('8','22')= 1 ;

Parameters

in(i,j) binary crossing matrix of arcs ending in nodes of G;

* 1 - if the j-th arc ends in the i-th node

* 0 - otherwise;

in('1','2')= 1 ;

in('1','4')= 1 ;

in('2','6')= 1 ;

in('2','8')= 1 ;

in('3','1')= 1 ;

in('3','9')= 1 ;

3. Models and Algorithms for Movement Planning

92

in('3','14')= 1 ;

in('4','3')= 1 ;

in('4','5')= 1 ;

in('4','11')= 1 ;

in('4','20')= 1 ;

in('4','18')= 1 ;

in('4','16')= 1 ;

in('4','10')= 1 ;

in('5','7')= 1 ;

in('5','12')= 1 ;

in('5','22')= 1 ;

in('6','13')= 1 ;

in('6','15')= 1 ;

in('7','17')= 1 ;

in('8','19')= 1 ;

in('8','21')= 1 ;

Parameters

a(i,n,k) source and destination nodes via indirect nodes;

*a(i,n,k)=1 if the i-th node is the n-th source node for the

 k-th object,

*a(i,n,k)=-1 if the i-th node is the n-th destination node for

 the k-th object,

*a(i,n,k)=0 otherwise;

a('1','1','1')=1;

a('7','1','1')=-1;

a('2','1','2')=1;

a('8','1','2')=-1;

Variables

x(j,n,k)

z;

Positive variable x;

Equations

cost total paths cost (eq. (3.78))

constr1(i,n,k) eq. (3.79)

constr2(i) eq. (3.80)

constr3(i) eq. (3.81);

cost.. z =e= sum((j,n,k), d(j)*x(j,n,k));

constr1 (i,n,k).. sum(j, (out(i,j)-in(i,j))*x(j,n,k))=e=a(i,n,k);

constr2 (i)..sum((j,n,k), out(i,j)*x(j,n,k))=l=1;

constr3 (i)..sum((j,n,k), in(i,j)*x(j,n,k))=l=1;

Model DisjPathsSum /all/;

option limrow=16;

*number of rows in output file

option reslim=10000;

*10000 seconds for calculations;

option iterlim=100000000;

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

93

* upper bound on iteration numbers

option lp=Cplex;

* solver Cplex

solve DisjPathsSum using lp minimizing z;

display x.l, z.l;

By solving this model using the GAMS/CPLEX 12.2 solver we obtain:

---- 154 VARIABLE x.L

 1 2

1 .1 1.000

7 .1 1.000

10.1 1.000

17.1 1.000

21.1 1.000

---- 154 VARIABLE z.L = 10.000

It means that for the 1st object we have obtained the path (as a sequence of arcs):

1-10-17 and for the 2nd one: 7-21. Total cost of this K=2 node-disjoint paths =10.

3.4.2.3. Example of the GAMS model for the NDRP-Max problem

Below we present the GAMS model for the K=2 NDRP-Max problem from

s=(1,2) to t=(7,8) in graph G from Fig. 3.19. We set the following equivalence

between notations being used in the model of the NDRP-Max problem (defined by

(3.78)-(3.84) and (3.86), (3.87)) and in the source code of the GAMS model (notation

x≡y describes that x in the GAMS model is equivalent to y in the NDRP-Max

model): d(j) jd≡ , out(i,j) ijout≡ , in(i,j) ijin≡ , a(i,n,k) inka≡ , x(j,n,k) jnkx≡ .

Sets

i set of nodes of graph G

/1, 2, 3, 4, 5, 6, 7, 8/

j set of arcs of graph G

/1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22/

k set of objects (paths)

/1, 2/

n set of indirect nodes

/1, 2/

Parameters

d(j) arcs cost vector;

 d('1')= 1 ;

 d('2')= 1;

 d('3')= 3 ;

3. Models and Algorithms for Movement Planning

94

 d('4')= 3 ;

 d('5')= 4 ;

 d('6')= 4 ;

 d('7')= 2 ;

 d('8')= 2 ;

 d('9')= 1 ;

 d('10')= 1;

 d('11')= 1 ;

 d('12')= 1 ;

 d('13')= 6 ;

 d('14')= 6 ;

 d('15')= 4 ;

 d('16')= 4 ;

 d('17')= 3 ;

 d('18')= 3 ;

 d('19')= 2 ;

 d('20')= 2;

 d('21')= 1;

 d('22')= 1;

Parameters

out(i,j) binary crossing matrix of arcs starting in nodes of G;

* 1 - if the j-th arc starts in the i-th node

* 0 - otherwise;

out('1','1')= 1 ;

out('1','3')= 1 ;

out('2','5')= 1 ;

out('2','7')= 1 ;

out('3','2')= 1 ;

out('3','10')= 1 ;

out('3','13')= 1 ;

out('4','9')= 1 ;

out('4','15')= 1 ;

out('4','17')= 1 ;

out('4','19')= 1 ;

out('4','12')= 1 ;

out('4','6')= 1 ;

out('4','4')= 1 ;

out('5','9')= 1 ;

out('5','11')= 1 ;

out('5','21')= 1 ;

out('6','14')= 1 ;

out('6','16')= 1 ;

out('7','18')= 1 ;

out('8','20')= 1 ;

out('8','22')= 1 ;

Parameters

in(i,j) binary crossing matrix of arcs ending in nodes of G;

* 1 - if the j-th arc ends in the i-th node

* 0 - otherwise;

in('1','2')= 1 ;

in('1','4')= 1 ;

in('2','6')= 1 ;

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

95

in('2','8')= 1 ;

in('3','1')= 1 ;

in('3','9')= 1 ;

in('3','14')= 1 ;

in('4','3')= 1 ;

in('4','5')= 1 ;

in('4','11')= 1 ;

in('4','20')= 1 ;

in('4','18')= 1 ;

in('4','16')= 1 ;

in('4','10')= 1 ;

in('5','7')= 1 ;

in('5','12')= 1 ;

in('5','22')= 1 ;

in('6','13')= 1 ;

in('6','15')= 1 ;

in('7','17')= 1 ;

in('8','19')= 1 ;

in('8','21')= 1 ;

Parameters

a(i,n,k) source and destination nodes via indirect nodes;

*a(i,n,k)=1 if the i-th node is the n-th source node for the

 k-th object,

*a(i,n,k)=-1 if the i-th node is the n-th destination node for

 the k-th object,

*a(i,n,k)=0 otherwise;

a('1','1','1')=1;

a('7','1','1')=-1;

a('2','1','2')=1;

a('8','1','2')=-1;

Variables

x(j,n,k)

z;

Positive variable x, u;

Equations

cost maximal paths cost (eq. (3.86))

constr1(i,n,k) eq. (3.79)

constr2(i) eq. (3.80)

constr3(i) eq. (3.81)

constr4(k) eq. (3.87)

cost.. z =e= u;

constr1 (i,n,k).. sum(j, (out(i,j)-in(i,j))*x(j,n,k))=e=a(i,n,k);

constr2 (i)..sum((j,n,k), out(i,j)*x(j,n,k))=l=1;

constr3 (i)..sum((j,n,k), in(i,j)*x(j,n,k))=l=1;

constr4(k)..sum((j,n), d(j)*x(j,n,k))=l=u;

Model DisjPathsMax /all/;

option limrow=16;

*number of rows in output file

3. Models and Algorithms for Movement Planning

96

option reslim=10000;

*10000 seconds for calculations;

option iterlim=100000000;

* upper bound on iteration numbers

option lp=Cplex;

* solver Cplex

solve DisjPathsMax using lp minimizing z;

display x.l, z.l;

Solving this model using the GAMS/CPLEX 12.2 solver we obtain:
---- 156 VARIABLE x.L

 1 2

1 .1 1.000

7 .1 1.000

10.1 1.000

17.1 1.000

21.1 1.000

---- 156 VARIABLE z.L = 5.000

It means that for the 1st object we have obtained path (as a sequence of arcs):

1-10-17 and for the 2nd one: 7-21. Maximal cost of any of K=2 node-disjoint paths is

equal 5 and is minimal among other K=2 node-disjoint paths in the graph G.

3.4.3. Description of Algorithms for Solving DP Problems

3.4.3.1. Subgraphs-generating node-disjoint paths algorithm (SGDP)

For solving the NDRP-Sum and NDRP-Max problems we propose the

subgraphs generating-based algorithm (SGDP), (Tarapata, 2001;

Tarapata & Wroclawski, 2010g). The algorithm searches for a bundle of

node-disjoint paths for the K objects, each path consists of 2 or more indirect nodes

(including the source and destination). The idea of the algorithm is to generate

subgraphs (see Fig. 3.20) in the network of terrain squares (for each moved object

we generate a separate subgraph) and afterwards, in each of the subgraphs the

Dijkstra’s shortest path algorithm is run. Each of these subgraphs is created as

follows. We link nodes: source and destination for the given object (if we have, for

example, 4 indirect nodes we set the following pairs source-destination: 1-2, 2-3, 3-

4) and afterwards we "mark" the right and left from the line linking these node

stripes with a width of 0,5swk, where swk describes the width of the stripe, in which

the object should move. Nodes of graph ,G GG V A= , which centre coordinates are

located at this stripe generate the subgraph. It means that the PGk subgraph for the

k-th object is defined as follows:

,k Gk GkPG V A= (3.88)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

97

()

()

: () tan () () ()
cos

 () tan () ()
cos

k
G k k k

k

Gk

k
k k k

k

sw
v V x s g y v y s x v

g
V

sw
x s g y v y s

g

 
∈ + ⋅ − − ≤ ≤ 

 
=  
 

≤ + ⋅ − +

  

 (3.89)

where VGk − set of subgraph nodes for the k-th object, ks denotes the source node

for the k-th object, and (), ()x v y v - coordinates of the v-th node; AGk − the set of the

subgraph’s arcs, () (){ }, ' : , 'Gk Gk Gk GA v v V V v v A= ∈ × ∈ .

Fig. 3.20. The idea of "cutting" the subgraphs (in the mesh graph) into stripes with a width of swk for

two moved objects with no indirect nodes

It is possible to exclude some arcs during paths searching by using the

passability threshold parameter, which is introduced to reject each arc with cost

greater than the given parameter value. Having the subgraph generated for each

object we can determine the shortest path for each one in the network based on this

subgraph using a few searching strategies. Three strategies are being used to

generate the order of objects, for which we find paths:

stripeOrderStrategies={Ascending, Descending, Random}. The first two strategies are

based on order of requests: Ascending − order is the same as in the given paths to

find; Descending − the order is reversed. In Random the strategy generated order is

randomized with a uniform distribution. By searching with a nondeterministic

strategy, Random allows the algorithm to try the subset of K! possible orders, where

K is the number of objects. The number of examined orders is restricted by stop

conditions defined in stopStrategiesSets (see further).

3. Models and Algorithms for Movement Planning

98

The pseudo code of the SGDP algorithm is as follows:

Input data (see chapter 3.4.2.1): K, ,G GG V A= , []ink V M K
a

× ×

=A − matrix of source

and destination nodes via indirect nodes for each object (generating set of path

segments PS(k) for the k-th object, number of path segments for each object

is equal M)

0) Save initial graph G state

1) WHILE (none of the stop conditions is fulfilled) DO

2) Generate stripe order using stripeOrderStrategy;

3) IF no unchecked stripe order remains -> THEN EXIT; END IF;

4a) IF searching mode equals SameWidth THEN

5a) WHILE (none of the stop conditions is fulfilled) DO

6a) Generate width of stripes using

 widthOfStripeGenerationStrategy;

7a) IF no unchecked width remains THEN

 Restore initial graph G state and go to 5a);

 END IF;

8a) FOR each path k among K objects to find DO

9a) FOR each segment in PS(k)

10a) Search path for segment in G;

 END FOR;

11a) IF path was found THEN

 save path for k object and remove used nodes and

arcs from graph G;

 END IF;

 END FOR;

12a) IF for all objects paths were found THEN

 save feasible solution;

 END IF;

 END WHILE;

 END IF;

4b) IF searching mode equals VariousWidth THEN

5b) WHILE (none of the stop conditions is fulfilled) DO

6b) FOR each path k among K objects DO

7b) Generate width of stripes for k object using

 widthOfStripeGenerationStrategy

8b) IF no unchecked width remains THEN

 Restore initial graph G state and go to 5b);

 END IF;

9b) FOR each segment in PS(k) DO

10b) Search path for segment in G;

 END FOR;

11b) IF path was found THEN

 save path for k object and remove used nodes and arcs

 from graph G

 ELSE restore initial graph G state

 END IF;

 END FOR;

12b) IF for all objects have found paths

 save feasible solution and restore initial graph G state

 END IF;

 END WHILE;

 END IF;

 END WHILE;

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

99

There are two modes of path searching: SameWidth − all stripes must have the

same width, VariousWidth − each stripe may have a different width.

Two different strategies for generating the width of stripes are implemented:

 widthOfStripeGenerationStrategy={Constant, Random},

where Constant − width of the stripe is given and never changed; Random – width

of thee stripe is randomized with a uniform distribution. Random strategy

implementation generates a new width for the stripe with respect to the previous

generated width, so that only greater values are allowed. Minimal width

increasing is 0.5 unit (one unit = distance between two neighbouring nodes

(squares)).

Additionally, we used four different stop strategies, which could be used in

any combination:

stopStrategies={MaxIterationsNumber, MaxFeasibleSolutionsFound,

 NextSolutionIsBetter, TimeLimit}.

In the MaxIterationNumber strategy the algorithm ends when the maximum

iteration number is reached, where a single iteration is the one searched for with

a fixed order and a width of the stripes. With the MaxFeasibleSolutionsFound

strategy the algorithm ends, when a specific number of the feasible (acceptable)

solutions is found; NextSolutionIsBetter stop strategy ends, when the next feasible

solution is no better than the previous one, plus there is a specific epsilon value.

The last strategy, TimeLimit, stops the algorithm when the execution time reaches

the specified time limit.

We can save the found paths during previous iterations or not for the objects

(PathMemory={true, false}): if the next iteration uses the same stripe width as for the

previously found path we can use it to decrease computational time of the

iteration.

Let us analyse the computation complexity of the SGDP algorithm.

Generating K subgraphs for each source-destination pairs in each path segment is

an operation, which complexity is O(MKV). Determining the shortest path in each

subgraph has a complexity of O(A logV) using the Dijkstra’s algorithm with binary

heaps; since we do it MK times (M path segments for each of K objects) we have

O(MKAlogV). The number of possible combinations of paths determining the

order is equal to the number of permutation among K elements, that is K!. If we

check it for each possible action stripe width (let the number of the possible action

stripe width for each object be equal Q) then it can be done, in the worst case, QKK!

times. Since the complexity of the SGDP algorithm is O(QKK!MKA logV). The

estimation of O(QKK!MKA logV) of the SGDP complexity is only theoretical (when

all stop conditions: MaxIterationsNumber, MaxFeasibleSolutionsFound,

NextSolutionIsBetter, TimeLimit would have maximum values). In practice, time

complexity of the SGDP is estimated by the function O(WMKA logV), where

3. Models and Algorithms for Movement Planning

100

W=MaxIterationsNumber and we never take into account all QKK! possibilities of

determining paths, because of using techniques to avoid checking all of them:

randomization, different stop conditions, saving paths found earlier, etc.

Experimental results show that in an average case the SGDP runs in polynomial

time (see Fig. 3.24, Table 3.11: minCT_ SGDP, maxCT_ SGDP, avgCT_ SGDP).

Let us notice that the considered algorithm superbly fits the parallel

computations by using, for example, K processors (each of the processors generates

a subgraph and determines the shortest path in this subgraph). In such a case we

accelerate computations about K times.

3.4.3.2. Minimal cost flow problem-based algorithms

In the paper (Tarapata, 2008e) it has been shown how to use modifications of

the Busacker-Gowen minimal-cost flow algorithm (Busacker & Gowen, 1961) to

solve the node-disjoint case of the problems: DP2.1, DP2.2, DP2.3, DP2.4 in some

military applications.

The problem of finding an acceptable solution of K node-disjoint paths in the

, ,G GS G V A c= = network (see Fig. 3.21a) from Ks to Kt subset of nodes is based

on the S* temporary network (see Fig. 3.21b) and the maximal flow algorithm. We

use the well-known conclusion from the Ford-Fulkerson theorem concerning

maximal flow in network S from s (source) to t (target) (Wilson, 1998, pp.172): "If

the capacity value of each arc in the network S is an integer, then the capacity cij of the arc

(i,j) describes the number of arcs linking i and j. The value of the maximal flow in such

a network describes the number of all arc-disjoint paths from s to t". Since we would like

to find node-disjoint paths (instead of arc-disjoint) we must modify the S network

to S*. The temporary network S* is constructed as follows:

* * ,S G c= (3.90)

where * * *,G V A= , { }

* ' " ,V V V s t= ∪ ∪ , * *:c V V N× → − capacity function,

cij=c(i,j) − capacity function value for arc (i,j). Graph G* is constructed as follows:

each node v of graph G is replaced by two nodes (see Fig. 3.21b): v' (belonging to

V' set) and v" (belonging to V" set), next we link v' and v" by an arc and set

capacity of this arc equal to 1. All of the arcs, which end in the v node in graph G

will end in v' node in graph G*, all of the arcs which start in the v node in G will

start from v" in G*. Each of these arcs in G* will have the same capacity as in G.

Moreover, two nodes (s and t) are added to the set of nodes in G*: we link node s

with each of the nodes belonging to the Ks set and each of the nodes belonging to

Kt with node t. Each of these arcs has the capacity value set to 1.

The problem of finding the K node-disjoint paths in network S* is based on

the maximal flow problem definition. Flow f in network S* is a function, which set

for each arc (i,j) in S* such a nonnegative value fij that:

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

101

1. for each arc (i,j) in S* the following formula is fulfilled:

0 ij ijf c≤ ≤ (3.91)

2. for source node s in S* the following formula is fulfilled:

* *
∈ ∈

− =∑ ∑si is

i V i V

f f FV (3.92)

Value FV is called the flow value.

3. for target node t in S* the following formula is fulfilled:

* *

ti it

i V i V

f f FV
∈ ∈

− = −∑ ∑ (3.93)

4. for each node * /{ , }j V s t∈ :

* *

0ji ij

i V i V

f f
∈ ∈

− =∑ ∑ (3.94)

Maximal flow problem is defined as follows: for a given S*, s, t to find [fij]*

which satisfy (3.91)-(3.94) and

*

(,)
([]) max ([])

ij

ij ij
f SF s t

FV f FV f
 ∈ 

= (3.95)

where SF(s,t) – set of all possible flows in S* from s to t.

(a) (b)

Fig. 3.21. (a) Network S with values of arc capacity cij; (b) Network S* related to S with flow values

[fij]* after realization of two iterations of maximal flow algorithm (FV=2), Ks={1,2, 3}, Kt={6,7}

 If, after solving the problem, F([fij]*)<K then in S* (and in consequence in S) K

node-disjoint paths from Ks to Kt does not exist. Otherwise, K node-disjoint paths

from Ks to Kt exist and we can read them after the last step of the maximal flow

3. Models and Algorithms for Movement Planning

102

algorithm as follows: we K times start from s and choice arcs (i,j) with fij=1 till we

achieve t. These alternate sequences of nodes and arcs indicate the k-th disjoint

path from s to t. For example, in Fig. 3.21b we have FV=K=2 disjoint paths (as the

sequence of nodes) from Ks={1,2,3} to Kt={6,7}: (1st) 1'-1"-4'-4"-6'-6"; (2nd) 2'-2"-5'-5"-

7'-7".

To find the K node-disjoint shortest paths (with minimal total cost of all K

paths) we modify the S* network as follows:

{ }

** * , ,S G q c= (3.96)

where * *:q V V R+

× → − time cost function, qij=q(i,j) − value of the function for arc

(i,j).

Formulation of the K node-disjoint shortest paths problem in the S* network from s

to t defined as minimal cost flow problem with demanded flow equal K is as

follows:

(,) *

minij ij
i j A

q f
∈

→∑ (3.97)

with constraints: (3.91), (3.92) where we replace FV=K, (3.93) where we

replace FV=K, (3.94).

Method for solving this problem is based on the Busacker-Gowen algorithm

(Busacker & Gowen, 1961) with a complexity of O(V4), where V is the number of

nodes in G* and presented in details in (Tarapata, 2008e).

(a) (b)

Fig. 3.22. (a) Network S with values of qij and cij; (b) Network S** related to S prepared for finding

FV=K=2 node-disjoint shortest paths, Ks={1, 2, 3}, Kt={6, 7}

Z. Tarapata − Models and Algorithms for Knowledge

Let us note that the above

problem when Ks and K

between K pairs of specified nodes). This method only allows finding

paths between any of the nodes belonging to

solving node-disjoint case problems:

In the paper (Tarapata

modifications of the Edmonds

the NDRP-Sum and NDRP

A specific method for constructing the temporary network being used in the

modified Edmonds-Karp algorithm in order to find the

visiting specified nodes has been proposed.

3.4.4. Experimental Analysis of the A

We have conducted computations for real terrain areas

with different number of nodes: 5

(Fig. 3.23b) and 35 000. We have used random pairs of source

(single segments only (M

research for almost every possible combination of

defined in chapter 3.4.3.1

(a)

Fig. 3.23. Typical mesh graphs representing a fragment of the terrain. Colour represents cost of

nodes: the light colour of the nodes (square) describes open (well passable) terrain, the dark colour

describes obstacles (forests, lakes, rivers, buildings), the lighter

(a) Graph with 7 540=65×116 nodes representing terrain near Drawsko (Poland).

(b) Graph with 25 000=125×200 nodes representing terrain near Radom (Poland) with two

node-disjoint paths found by the

The following

MaxIterationNumber}, {TimeLimit

{TimeLimit, MaxIterationNumberStrategy

− Models and Algorithms for Knowledge-Based Decision Support and Simulation..

us note that the above-presented method does not guarantee solving the

Kt are vectors (and we must find the K node

pairs of specified nodes). This method only allows finding

paths between any of the nodes belonging to Ks and Kt , so it can be used for

disjoint case problems: DP2.1, DP2.2, DP2.3, DP2.4.

er (Tarapata & Wroclawski, 2011d) it has been shown how to use

modifications of the Edmonds-Karp (Edmonds & Karp, 1972) algorithm to solve

NDRP-Max problems (modifications of the

A specific method for constructing the temporary network being used in the

Karp algorithm in order to find the K node

visiting specified nodes has been proposed.

Experimental Analysis of the Algorithms

We have conducted computations for real terrain areas used in

with different number of nodes: 5 000, 7 540 (Fig. 3.23a), 10 000, 20

. We have used random pairs of source-

M=1)) for K objects (K∈{2, 3, 4, 5, 6}). We have performed

research for almost every possible combination of the SGDP algorithm

3.4.3.1 for the NDRP-Sum problem.

(b)

Typical mesh graphs representing a fragment of the terrain. Colour represents cost of

nodes: the light colour of the nodes (square) describes open (well passable) terrain, the dark colour

describes obstacles (forests, lakes, rivers, buildings), the lighter the colour the smaller the cost value.

540=65×116 nodes representing terrain near Drawsko (Poland).

000=125×200 nodes representing terrain near Radom (Poland) with two

disjoint paths found by the SGDP algorithm (lighter colour)

The following stopStrategiesSets have been used: {{

TimeLimit, MaxIterationNumber, NextSolutionIsBetter

MaxIterationNumberStrategy, NFeasibleSolutionsFound

and Simulation... 103

presented method does not guarantee solving the

node-disjoint paths

pairs of specified nodes). This method only allows finding K disjoint

, so it can be used for

) it has been shown how to use

Karp, 1972) algorithm to solve

problems (modifications of the DP2.5 problem).

A specific method for constructing the temporary network being used in the

node-disoint paths

used in Zlocien system

000, 20 500, 25 000

-destination nodes

{2, 3, 4, 5, 6}). We have performed

algorithm parameters

Typical mesh graphs representing a fragment of the terrain. Colour represents cost of

nodes: the light colour of the nodes (square) describes open (well passable) terrain, the dark colour

the colour the smaller the cost value.

540=65×116 nodes representing terrain near Drawsko (Poland).

000=125×200 nodes representing terrain near Radom (Poland) with two

lighter colour)

have been used: {{TimeLimit,

NextSolutionIsBetter},

NFeasibleSolutionsFound}}

3. Models and Algorithms for Movement Planning

104

with the following values: MaxIterationNumber=10, NFeasibleSolutionsFound=4, in

NextSolutionIsBetter we set the minimum decrement of cost to 5.0, in TimeLimit

strategy we have restricted the execution time of each iteration to 5 000ms.

All computations have been done using a computer with Intel Core 2 Duo 2.2

GHz processor and 3GB RAM.

Fig. 3.24. Average computation time (milliseconds, logarithmic scale) of the SGDP algorithm in

relation to stripeOrderStrategy, widthOfStripeGenerationStrategy and PathsMemory

In Fig. 3.24 we present the average computation time of the SGDP algorithm

in relation to stripeOrderStrategy, widthOfStripeGenerationStrategy and PathsMemory

for different number of nodes. From Fig. 3.24 results that in an average case the

complexity of the SGDP algorithm is time-polynomial and it is much better than

the theoretical estimation given in chapter 3.4.3.1. It results from using some

techniques (described in chapter 3.4.3.1) to decrease this complexity, such as:

randomization, different stop conditions, saving paths found earlier, etc. It is

easy to notice that we have obtained the shortest computation times for

stripeOrderStrategy∈{Ascending, Descending} and widthOfStripeGenerationStrategy

=Constant. Moreover, we can notice that for each pair stripeOrderStrategy-

widthOfStripeGenerationStrategy computation time for PathsMemory=true is

significantly shorter than for PathsMemory=false (from about 3 to 10 times). It

results from the fact that we have saved paths found during previous

iterations for objects and if the next iteration uses the same stripe width as for

the previously found path, we will use these paths to decrease the computational

time of the iteration.

Analysis of results in Fig. 3.25 supplements the results presented above for

different values of stopStrategy. We obtained the shortest computation time for the

set of stop strategies {TimeLimit, MaxIterationNumber, NextSolutionIsBetter}.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

105

In Fig. 3.26 we presented the average computation time (milliseconds,

logarithmic scale) of the SGDP algorithm in relation to the number of graph nodes

(V) and number of objects (K).

Fig. 3.25. Average computation time (milliseconds, logarithmic scale) of the SGDP algorithm in

relation to stopStrategy and PathsMemory

Fig. 3.26. Average computation time (milliseconds, logarithmic scale) of the SGDP algorithm in

relation to the number of graphs nodes (V) and number of objects (K)

In Fig. 3.27 we presented the average accuracy coefficient avgAC of the SGDP

algorithm (AC=value of the objective function obtained from the SGDP

algorithm/optimal value of the objective function) in relation to:

stripeOrderStrategy, widthOfStripeGenerationStrategy and PathsMemory

(an accurate (optimal) solution of the problem (3.78)-(3.84) obtained using the the

GAMS/CPLEX 12.2 solver). The value of avgAC fluctuates from ~1.02 to ~1.6. It

means that the value of the objective function (sum of the cost of the K paths)

obtained from the SGDP algorithm was worse from ~2% to ~60% in relation to the

3. Models and Algorithms for Movement Planning

106

optimal solution (see also Table 3.11). The SGDP algorithm gives the best values of

the avgAC for PathsMemory=true, stripeOrderStrategy=Random, and

widthOfStripeGenerationStrategy=Constant.

Fig. 3.27. Average accuracy coefficient (avgAC) of the SGDP algorithm in relation to

stripeOrderStrategy, widthOfStripeGenerationStrategy and PathsMemory (accurate solution obtained

using the GAMS/CPLEX 12.2 solver)

Table 3.11. Comparison of the computation time and accuracy of the SGDP algorithm with

characteristics of the optimal solution obtained by solving problem (3.78)-(3.84) using the

GAMS/CPLEX 12.2 solver for K=2

V 5 000 7 540 10 000 20 500 25 000 35 000

minOF_SGDP 162 1 247 355 203 2 729 23 775

maxOF_SGDP 191 1 464 362 208 3 334 25 488

avgOF_SGDP 167 1 333 356 204 2 950 24 364

OOF 158 956 353 190 1 955 21 038

minAC 2.2% 30.4% 0.7% 6.7% 39.6% 13.0%

maxAC 20.4% 53.1% 2.5% 8.9% 70.5% 21.2%

avgAC 5.5% 39.4% 1.0% 7.3% 50.9% 15.8%

minCT_SGDP 10 31 15 140 109 250

maxCT_SGDP 156 375 282 1 375 1 250 3 079

avgCT_SGDP 98.2 224.4 180.2 852.4 789.2 1 786.7

CT_CPLEX 5 200 8 910 10 690 73 140 26 030 114 410

minCTAC 33 24 38 53 21 37

maxCTAC 520 287 713 522 239 458

avgCTAC 52.9 39.7 59.3 85.8 33.0 64.0

In Table 3.11 we presented a comparison of the computation time and

accuracy of the SGDP algorithm with characteristics of the optimal solution

obtained by the solving problem (3.78)-(3.84) using the GAMS/CPLEX 12.2 solver

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

107

for K=2. We used the following notations: OOF – optimal value of objective

function (3.78); minOF_SGDP, maxOF_SGDP, avgOF_SGDP – minimal, maximal

and average values of the objective function, respectively, obtained from the SGDP

algorithm; AC – percentage approximation coefficient of the SGDP

algorithm=(value of the objective function from the SGDP algorithm/optimal

value of the objective function) in percents-100%; minAC, maxAC, avgAC –

minimal, maximal and average values of AC; minCT_SGDP, maxCT_SGDP,

avgCT_SGDP – minimal, maximal and average values of the computation time (in

msec) using the SGDP algorithm; CT_CPLEX – computation time (in msec) for

finding the optimal solution using the GAMS/CPLEX 12.2 solver; minCTAC,

maxCTAC, avgCTAC – computation time acceleration coefficient CTAC values

(respectively: minimal, maximal, average), CTAC=computation time using the

GAMS/CPLEX solver/computation time using the SGDP algorithm. Values of

minAC, maxAC and avgAC indicate that the value of the objective function (sum of

the cost of the K paths) obtained from the SGDP algorithm was worse from ~1% to

~50% (average) in relation to the optimal solution, but the computation time for the

SGDP algorithm was shorter from ~30 to ~85 times in relation to the

GAMS/CPLEX solver (in selected cases even >700 times faster,

maxCTAC(10000)=713). It is possible to increase the accuracy of the algorithm by

changing its input parameters (in parenthesis we give the values, which have

been used during experiments): MaxIterationNumber (10),

NFeasibleSolutionsFound (4), NextSolutionIsBetter (5.0), TimeLimit (5000ms).

Additional experiments have shown that by increasing, for example

MaxIterationNumber or TimeLimit, we can increase the accuracy of the algorithm,

but at the cost of time. Parameter values, which have been used during

experiments described in this chapter made some compromise between accuracy

and time-complexity of the SGDP algorithm.

3.5. Summary

As it has been written in chapter 3.1, all presented methods have applications

in many transportation problems, especially ones related to paths planning. The

approach presented in chapter 3.2 is dedicated especially for multiresolution path

planning in grid graph-based route planning when the grid represents, for

example a terrain environment as a regular grid of terrain squares. It can be shown

that a multiresolution approach for path planning represented by finding shortest

paths in recurrently defined G* can also be used for multistage path planning: we

can first find a "rough" path in a "rough" terrain represented by G* (for example in

Fig. 3.11) and then we can find an accurate path in a more detailed environment.

However, the DSP algorithm gives a good result not only for the all-pairs shortest

paths problem (Table 3.4). Since the most complex steps of the algorithm (steps 1-3,

3. Models and Algorithms for Movement Planning

108

"bottleneck") are done only one time (the b-graph is built only one time – initial

preprocessing), then if we compute a one-pair shortest path many times it allows

us to shorten the time of the "bottleneck". It is also possible to set a compromise

between space and time complexity of the DSP algorithm.

However, any algorithm solving the multiobjective shortest path problem

is, at least, exponential in the worst case analysis but we can use specific, effective

approaches for the special MOSP problems. In chapter 3.3 we focused on analysis

of complexity of selected MOSP problems and showed how we can use

modifications and advantage of fast implementations of the Dijkstra’s algorithm in

order to effectively and optimally solve them. Experimental results of the

computational time for the presented approach (especially the modified Dijkstra’s

algorithm) in chapter 3.3.5 confirm their good effectiveness for solving selected

MOSP problems. Models and methods described in the chapter were selected from

numerous approaches. Such problems as: determining disjoint paths (Li et al., 1992,

Schrijver & Seymour, 1992; Tarapata, 1999a; 2000e), stochastic network

dependencies (Sigal et al., 1980; Korzan, 1982; 1983a; 1983b; Loui, 1983),

time-dependencies in the network (Bernstein & Kelly, 1997; Cai et al., 1997; Djidjev

et al., 1995; Sherali et al., 1998) in multicriteria context were only indicated here.

Algorithms presented in chapter 3.4 (SGDP and modifications of minimal

cost flow algorithms) for solving the node-disjoint shortest K paths problem in

mesh graphs can be used for transportation, e.g. maneuver planning of military

detachments (Tarapata, 2009a). For one of them (SGDP) it has been shown that it is

fast (in comparison with the GAMS/CPLEX solver) and gives a satisfying solution

to the problem (experimental average approximation coefficient of the algorithm is

equal from 1% to 50%). Since the algorithm is approximated it seems to be essential

to provide necessary and sufficient conditions for obtaining optimal solutions and

estimate the theoretical approximation coefficient. Moreover, it seems to be

essential to examine sensitivity of the algorithm changing number of indirect

nodes in paths for each object and values of the parameters:

MaxFeasibleSolutionsFound, NextSolutionIsBetter, NFeasibleSolutionsFound. It is

possible to extend the considered problem using more criteria (e.g. minimization of

maximal path cost for any object) and obtaining the multicriteria disjoint shortest

paths problem.

Majority of the presented methods have been used in practice. Many very

interesting models for paths planning (alternative paths, simplest path,

time-dependent paths) have not been presented here due to limitation reasons and

can be found in other papers of the author (Tarapata, 2004b; 2006c; Tarapata et al.,

2009b; 2009d; Tarapata & Mierzejewski, 2010f). However, some of these

applications are presented in chapter 6.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

109

Appendix 3.A.1. Proof of Theorem 3.1

The proof consists of three parts: in the first one we consider a case when

G*=G, in the second one we prove that min * min * min * *((,)) ((,))s tL d s t L d x x≥ and the third

one contains proof that min * max *max * * * *
1((,)) ((,)) '(, (,))s t sL d s t L d x x L s W x x≤ + .

Part 1

If V*=V then G*=G and each x*=x. Moreover, for each * * *, Gx y V∈ occurs:

* *(,) { }W x y x= , hence for each * * *, Gz y V∈ the following formulas are true:

() ()

min min

*min * *
*

(,) , (,) ,
(,) min ((,)) min ((,)) 0 (,)z

d D x x d D x y
c x y L d L d c x y

⋅ ⋅ ∈ ⋅ ⋅ ∈

= ⋅ ⋅ + ⋅ ⋅ = + ,

() ()

min min

*max * *
*

(,) , (,) ,
(,) max ((,)) max ((,)) 0 (,)z

d D x x d D x y
c x y L d L d c x y

⋅ ⋅ ∈ ⋅ ⋅ ∈

= ⋅ ⋅ + ⋅ ⋅ = +

because of ()

min , { }D x x x= and ()

min min, { (,)} {(,)}D x y d x y x y= = represents arc

from x to y, hence min((,)) (,)L d x y c x y= . In such case min *min *min * *((,)) ((,))s tL d s t L d x x=

= *max *max * *((,))s tL d x x and formula (3.7) is fulfilled.

Part 2

Now, Let G* be a graph with n<V (n − count of nodes in G*) nodes. Let us take

into account the shortest path min
0 1 2 ((,))(,) (, , ,...,)l d s td s t x s x x x t= = = in G from s to t.

Each path (,)d s t in G "generates" path * * *(,)s td x x in G* such, that

* *

*

{0,..., ((,))} {0,..., *(*(,))}s t
i j

i l d s t j l d x x
x x

∈ ∈

∀ ∃ ∈ and * *

* * * * * * * * *
0 1 2 *(*(,))

(,) (, , , ...,)
s t

s t s tl d x x
d x x x x x x x x= = = . Let

us determine for each * * * * *, 0,..., ((,))i s tx i l d x x= set * *() { (,) : }i iT x x d s t x x= ∈ ∈ . For

example, for graph G* in Fig. 3.2 we have:
min(9, 8) (9,10,12, 3, 5,7,8)d s t= = = , * * * * * *

0 1 2(,) (, ,)s td x x x E x A x B= = = = and

*
0() {9,10,12}T x = , *

1() {3}T x = , *
2() {5,7,8}T x = . Let us consider any two

neighbouring b-nodes * * * * *
1, (,)i i s tx x d x x

+

∈ , i>0. Let us order nodes belonging to

*()iT x and *
1()iT x

+

 topologically (()T i describes cardinality of the set ()T i). We

obtain for *()iT x and *
1()iT x

+

 topologically ordered sequences of nodes:

*

* * *
,1 ,2 ,| ()|

, , ...,
i

i i i T x
x x x and *

1

* * *
1,1 1,2 1,| ()|

, , ...,
i

i i i T x
x x x

+

+ +
+

. Let us take the first
*
,1ix and the last

*

*

,| ()|ii T x
x nodes from *()iT x and the first node

*
1,1ix

+

 from *
1()iT x

+

. It is easy to observe

that:

 * * *
,1 1(,)i i ix W x x

−

∈ , *

* * *
1,| ()|

(,)
i

i ii T x
x W x x

+

∈ ,
* * *

1,1 1(,)i i ix W x x
+ +

∈ (3.A.1)

For example (see Fig. 3.2), for *
1()iT x

=

=>
*
1,1 3x = , for *

1 2()iT x
+ =

=>

* * *
2,1 2,2 2,35, 7, 8x x x= = = and next * * *

1,1 1 03 (,) {1,3}x W x x= ∈ = , * * *
2,1 2 15 (,) {5,6}x W x x= ∈ = ,

*

* * * *
1,1 1 21,| ()|

3 (,) {3, 4}
iT x

x x W x x= = ∈ = .

3. Models and Algorithms for Movement Planning

110

We will show that min * * *min *min * *
,1 1,1 1((,)) ((,))i i i iL d x x L d x x

+ +

≥ .

Let us observe that * *

min * * min * * min * *
,1 1,1 ,1 1,1,| ()| ,| ()|

(,) (,) (,)
i i

i i i ii T x i T x
d x x d x x d x x

+ +

= where

symbol "||" denotes the concatenation of two paths, hence

* *

min * * min * * min * *
,1 1,1 ,1 1,1,| ()| ,| ()|

((,)) ((,)) ((,))
i i

i i i ii T x i T x
L d x x L d x x L d x x

+ +

= +

 (3.A.2)

Next, let us note that from (3.5) results: *
1

* min * min * * min * *
1 1((,)) (,)

i
i i i ix

L d x x c x x
−

+ +

=

for

i>0 because * *
1, i ix x

+

 are adjacent in G* , and the length of the path from
*
ix to

*
1ix

+

equals the length of the arc between these nodes, that is *

min * *
1()

(,)
i

i ip x
c x x

+

 and *
()

i
p x

equals like in (3.5). From (3.2) we have:

()

()

*
min * * * *1

1 1

min * * * *
1 1

min * *
1

(,) (,), (,)

(,) (,), (,)

(,) min ((,))

 + min ((,))

i
i i i i

i i i i

i ix d D W x x W x x

d D W x x W x x

c x x L d

L d

−

− +

+ +

+

⋅ ⋅ ∈

⋅ ⋅ ∈

= ⋅ ⋅ +

⋅ ⋅

 (3.A.3)

Let us consider the first elements of sums in (3.A.2) and (3.A.3). It is easy to

observe that

()

*
min * * * *

1 1

min * *
,1 ,| ()|(,) (,), (,)

min ((,)) ((,))
i

i i i i

i i T xd D W x x W x x
L d L d x x

− +
⋅ ⋅ ∈

⋅ ⋅ ≤

 (3.A.4)

because of (3.A.1) we obtain: ()*

min * * min * * * *
,1 1 1,| ()|

(,) (,), (,)
i

i i i i ii T x
d x x D W x x W x x

− +

∈ and the

inequality (3.A.4) is clear. Let us consider the second elements of sums in (3.A.2)

and (3.A.3). By analogy we obtain:

()

*
min * * * *

1 1

min * *
1,1,| ()|(,) (,), (,)

min ((,)) ((,))
i

i i i i

ii T xd D W x x W x x
L d L d x x

+ +

+

⋅ ⋅ ∈

⋅ ⋅ ≤

 (3.A.5)

Taking into account (3.A.1) we have:

()*

min * * min * * * *
1,1 1 1,| ()|

(,) (,), (,)
i

i i i i ii T x
d x x D W x x W x x

+ + +

∈

and inequality (3.A.5) is clear. From (3.A.4) and (3.A.5) results

*
1

min * * * min * min * * min * *
,1 1,1 1 1((,)) ((,)) (,)

i
i i i i i ix

L d x x L d x x c x x
−

+ + +

≥ =

for each i>0. For i=0 we have to examine condition:
min * * * min * min * *

0,1 1,1 0 1((,)) ((,))L d x x L d x x≥ . We can then again write:

* *
0 0

min * * min * * min * *
0,1 1,1 0,1 1,10,| ()| 0,| ()|

(,) (,)|| (,)
T x T x

d x x d x x d x x=

* *
0 0

min * * min * * min * *
0,1 1,1 0,1 1,10,| ()| 0,| ()|

((,)) ((,)) ((,))
T x T x

L d x x L d x x L d x x= +

Next, from (3.5) results that

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

111

()

*
min * * * *1

0 1 1 0

* min * min * * min * *
0 1 0 1

(,) (,), (,)
((,)) (,) min ((,))

x d D W x x W x x
L d x x c x x L d

⋅ ⋅ ∈

= = ⋅ ⋅

,

 hence
()

*
min * * * *0

0 1 1 0

min * *
1,10 ,| ()| (,) (,), (,)

((,)) min ((,))
T x d D W x x W x x

L d x x L d
⋅ ⋅ ∈

≥ ⋅ ⋅ .

We have shown that condition min * * *min *min * *
,1 1,1 1((,)) ((,))i i i iL d x x L d x x

+ +

≥ is

fulfilled for each * * * *0,..., ((,)) 1s ti l d x x= − , hence min * min * min * *((,)) ((,))s tL d s t L d x x≥

from (3.7) is fulfilled.

Part 3

To prove that min *max *max * *((,)) ((,))s tL d s t L d x x≤ we will first show that

min * * *max *max * *
,1 1,1 1((,)) ((,))i i i iL d x x L d x x

+ +

≤ , * * * *1,..., ((,)) 1s ti l d x x= − , by analogy to part 2.

From (3.A.2), (3.5) and (3.6) results: *
1

* max * max * * max * *
1 1((,)) (,)

i
i i i ix

L d x x c x x
−

+ +

= and from (3.3)

()

()

*
min * * * *1

1 1

min * * * *
1 1

max * *
1

(,) (,), (,)

(,) (,), (,)

(,) max ((,))

 + max ((,))

i
i i i i

i i i i

i ix d D W x x W x x

d D W x x W x x

c x x L d

L d

−

− +

+ +

+

⋅ ⋅ ∈

⋅ ⋅ ∈

= ⋅ ⋅ +

⋅ ⋅

 (3.A.6)

It is easy to notice, by analogy to (3.A.4) and (3.A.5), that the first element of

the sum from (3.A.6) is greater than the first element of the sum from (3.A.2) and

the second element of the sum from (3.A.6) is greater than the second element of

the sum from (3.A.2), hence min * * * max * max * *
,1 1,1 1((,)) ((,))i i i iL d x x L d x x

+ +

≤ ,

* * * *1,..., ((,)) 1s ti l d x x= − . For i=0 we have to examine condition:

min * * *max * max * * * *
0,1 1,1 0 1 0 1((,)) ((,)) '(, (,))L d x x L d x x L s W x x≤ +

But * *
0 0

min * * min * * min * *
0,1 1,1 0,1 1,10,| ()| 0,| ()|

(,) (,)|| (,)
T x T x

d x x d x x d x x= and

* *
0 0

min * * min * * min * *
0,1 1,1 0,1 1,10,| ()| 0,| ()|

((,)) ((,)) ((,))
T x T x

L d x x L d x x L d x x= +

Next, from (3.3) and (3.5) results that *
1

* max *max * * max * *
0 1 0 1((,)) (,)

x
L d x x c x x= =

()
min * * * *

0 1 1 0(,) (,), (,)
max ((,))

d D W x x W x x
L d

⋅ ⋅ ∈

⋅ ⋅ . Since * *
0 1'(, (,))L s W x x is the length of the longest of the

shortest paths from
*
0,1s x= to any node from * *

0 1(,)W x x hence

*
0

* * min * *
0 1 0,1 0,| ()|

'(, (,)) ((,))
T x

L s W x x L d x x≥ . By analogy,

()

*
min * * * * 0

0 1 1 0

min * *
1,10,| ()|(,) (,), (,)

max ((,)) ((,))
T xd D W x x W x x

L d L d x x
⋅ ⋅ ∈

⋅ ⋅ ≥

Thus, we have shown that condition:

min *max *max * * * *
1((,)) ((,)) '(, (,))s t sL d s t L d x x L s W x x≤ +

is fulfilled.

 Q.E.D. ♦

4. Models and Algorithms for Movement Synchronization

4.1. Introduction

Scheduling movement of objects is an essential element of numerous systems:

for routing in computer networks (Cidon et al., 1997; 1999; Kerbache & Smith, 2000;

Silva & Craveirinha, 2004; Tarapata, 2006a), for movement planning of mobile

robots (Buchli, 2006; Jing, 2008; Ozaki et al., 1993), for tasks processed inside

distributed or parallel computing systems (Leung, 2004; Tarapata, 1999a; 2000e),

for redeployment of military detachments (Logan, 1997a; Rajput & Karr, 1994;

Tarapata, 1999b; 2000b; 2000f; 2001; 2003a; 2004b; 2004c; 2005a; 2005b; 2007a; 2007e;

2008a; 2008b; 2008c; 2008d; 2009a; 2010b, 2011b), in crowd planning and simulation

(Klupfel et al., 2005; Najgebauer et al., 2009) or in computer games (Van der Akker

et al., 2010), etc. The movement synchronization scheduling (MSS) problem deals

with planning of movement for many objects to synchronize their movement. This

problem most often consists of two subproblems: (MSS1) paths planning for many

objects; (MSS2) movement organization by determining synchronization

checkpoints and times on the paths. The MSS1 problem has been analysed in detail

in chapter 3. The MSS2, e.g. in military applications, results from the fact that

objects (tanks, trucks, aircrafts, units, convoys) are moved according to a group

pattern. From the point of view of mission realization, preservation of group

pattern during military actions is very important: each object being moved in

a group (e.g. during attack, during redeployment) must keep specific distances

between each other inside the group (Logan, 1997a; Tarapata, 2011a) or must

achieve specific checkpoints in given times (Tarapata, 2009a). Taking into account

military applications (e.g. battlefield simulation systems, military logistics

systems), movement synchronization scheduling has an influence on accuracy,

adequacy, effectiveness and other characteristics of such systems. Afterwards, the

problem is to model and optimize such movements of detachments to achieve

intended goals of commands (such as: achievement of destinations on restricted

time, avoiding losses during redeployment etc.). A special type of system with this

requirement is the Allied Deployment and Movement System (ADAMS)

(Heal & Garnett, 2001), which has been developed in support of multinational

force movement planning in NATO. The ADAMS provides the users with the tools

to plan and manage deployment operations. The other example of using such

requirements are modules for movement planning and simulation of military

objects (units) in combat simulators (Ceranowicz, 1994; Campbell et al., 1995,

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

113

Logan, 1997a; Henninger et al., 2000; Longtin & Megherbi, 1995; Najgebauer et al.,

2007b; Rajput & Karr, 1994, Reece et al., 2000; Tarapata, 2000c; 2010b).

This chapter is organized as follows. In chapter 4.2 selected scheduling

models and algorithms for synchronous movement are described. Some properties

of these algorithms are proved. Experimental analysis of the algorithms has been

given. In chapter 4.3 two-criteria movement synchronization scheduling problem

has been defined. Method for solving the problem has been described. Presented

models and algorithms are based on the papers (Tarapata 2001; 2005b; 2007a;

2008a; 2008d; 2009a; 2010b).

4.2. Movement Synchronization Scheduling (MSS)

4.2.1. Scheduling Models of Synchronous Movement

4.2.1.1. Notations and definitions

Let us assume that we have a directed graph G that defines the structure of

the terrain (divided into squares, hexagons - see chapter 2), ,G GG V A= , V= GV ,

VG – set of graph nodes (as centre of terrain squares, crossroads), AG – set of graph

arcs, AG⊂VG×VG, A= GA . On each arc we have a defined value , 'n nd of function d,

which describes the terrain distance between the graph nodes n and n’. K objects

(columns, trucks, tasks) move from source nodes vector s=(s1, s2,…, sK) to

destination nodes vector t=(t1, t2,…, tK) of G. For further discussion we accepted the

following notations (similar notations have been given in chapter 3.3.3.1, ≡ ()s
ks i k ,

≡ ()d
kt i k):

()
0 1(,) = () , (), ..., (), ..., ()kRr

k k k ks t i k s i k i k i k t= =
k k

I = I

(4.1)

()
0 1() (), (), ..., (), ..., () ()kRr

k kI k k k k Iτ τ τ τ τ= = =
k k

T T (4.2)

()0 1 1 2 1(), () (), () (), ()
() , , ..., R Rk k

k k k
k k k i k i k i k i k i k i k

V I V v v v
−

= = (4.3)

where Ik – vector of nodes describing the path for the k-th object,

()
1

{1,..., }
(), ()

k

m m
G

m R
i k i k A−

∈

∀ ∈ ; ()ri k – the r-th node on the path for the k-th object; sk,

tk – source and destination nodes for the k-th object; Tk – vector of time instances of

achieving the nodes belonging to the path for the k-th object; ()r kτ – time instance

of achieving node ()ri k by the head of the k-th object, 1

1, 0, 1
 () () 0r r

k K r Rk

k kτ τ

+

= = −

∀ ∀ ≥ ≥

and 0

1,
 () 0

k K
kτ

=

∀ = ; () ()kR

kk Iτ τ= – time of achieving destination node by the k-th

object; Vk – vector of velocities 1(), ()r r

k

i k i k
v

+
 of the k-th object on the arc ()

1(), ()r ri k i k+

of its path; Rk – number of arcs belonging to the path of the k-th object. For the set

4. Models and Algorithms for Movement Synchronization

114

Π(s,t) describing the set of vectors I(s,t) of paths from s=(s1, s2,…,sK) to t=(t1, t2,…,tK)

we have defined time *
τ as the earliest time of achieving the destination node by

the most delayed object:

1 2

*

(,) (, ,...,) (,) {1,..., }
min max ()

K
k

I s t I I I s t k K
Iτ τ

= ∈Π ∈

= (4.4)

Let k* denote the index of the object for which the moment of achieving the

destination node for its path is the latest among paths for other objects, i.e.
** *

{1,..., }
() max ()k kR R

k K
k k k kτ τ

∈

= ⇔ = . Let

()1 2(), (), ..., (), ..., ()
kk p PIP i k i k i k i k= (4.5)

denote a vector of nodes (checkpoints) at which we must align the head of the k-th

object in relation to the heads of other objects, where ()pi k – the p-th element of IPk

satisfying: ∀ = ∃ ∈ =1, {1,..., } () ()r
k k pp P r R i k i k and () {1,..., } () ()r

p k pr k r R i k i k= ∈ ⇔ = .

The form of IPk and ()pr k indicate that the path for the k-th object must cross by

nodes belonging to IPk. Let, by analogy

()1 2(), (), ..., (), ..., ()
kk p PTP k k k kτ τ τ τ= (4.6)

denote ordered set of time instances of achievement particular alignment nodes

from set IPk by the k-th object head, ()p kτ denotes moment of achieving the p-th

alignment node by the k-th object,

1

0

(), ()
{0,..., () 1}

() () r r

p

p i k i k
r r k

k k cτ τ
+

∈ −

= + ∑ (4.7)

where:
+

+

+

=

1

1

1

(), ()

(), ()

(), ()

r r

r r

r r

i k i k

ki k i k

i k i k

d
c

v
 (4.8)

describes real movement time (time-cost) of the k-th object on the arc

()
1(), ()r r

Gi k i k A+

∈ between ir(k) and ir+1(k) nodes of its path.

Additionally, we made the assumption that P1=P2=...=PK=N, i.e. for all objects

exist the same number of alignment points (nodes). Let us define for each p=1,..,N

the following characteristics:

max

{1,..., }
max ()p p

k K
kτ τ

∈

= (4.9)

1

1
()

K
avg

p p
k

k
K

τ τ

=

= ∑ (4.10)

* *
() () ()τ τ τ∆ = −p p pk k k (4.11)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

115

* *

{1,..., }
max ()τ τ

∈

∆ = ∆
p p

k K
k (4.12)

The most important criteria for movement synchronization scheduling can be

divided into two categories. The first category is time of movement of K objects.

We can define two basic measures of this category:

 (C.1.1): max

{1,..., }
max () minkR

k K
kτ τ

∈

= → (4.13)

 (C.1.2):
1

() mink

K
R

k

kτ

=

→∑ (4.14)

The second category is "distance" between times of achieving alignment

points by all of K objects. We can define four main measures of this category:

(C.2.1): ()
max

1 1

() min
N K

p p
p k

kτ τ

= =

− →∑∑ (4.15)

(C.2.2): ()
max

{1,..., } {1,..., }
min max () minp p

p N k K
kτ τ

∈ ∈

− → (4.16)

(C.2.3):
1 1

() min
K N

avg
p p

k p

kτ τ

= =

− →∑∑ (4.17)

(C.2.4):
{1,..., } {1,..., }
min max () minavg

p p
p N k K

kτ τ

∈ ∈

− → (4.18)

Presented criteria have the following interpretation: C.1.1 minimizes the time

of achieving destination node by the last object (the most delayed); C.1.2 minimizes

the total time of achieving destination nodes by all objects; C.2.1 minimizes total

differences in times of achieving all checkpoints by all objects; C.2.2 minimizes the

minimal of maximal differences in times of achieving any checkpoint by any object;

C.2.3 minimizes total average differences in times of achieving all checkpoints by

all objects; C.2.4 minimizes the minimal of maximal average differences of

achieving any checkpoint by any object.

4.2.1.2. Formulation of movement synchronization problem with time (MSST)

One of the formulations of the optimization problem for movement

synchronization of K objects can be defined as follows (we use criteria C.2.1

defined by (4.15)): for fixed paths Ik of each k-th object to determine such

+
= − =1(), ()

, 0, 1, 1,r r

k
ki k i k

v r R k K that

()
max

1 1

() min
N K

p p
p k

kτ τ

= =

− →∑∑ (4.19)

with constraints:

4. Models and Algorithms for Movement Synchronization

116

1 1

max

(), () (), ()
(), 0, 1, 1,r r r r

k
ki k i k i k i k

v v k r R k K
+ +

≤ = − =

 (4.20)

1(), ()
0, 0, 1, 1,r r

k
ki k i k

v r R k K
+

> = − = (4.21)

where 1

max

(), ()
()r ri k i k

v k
+

 describes the maximal velocity of the k-th object resulting from

its technical properties and topographical condition on the arc ()
1(), ()r r

Gi k i k A+

∈ .

Taking into consideration (4.7) and (4.9) we can write (4.19) as follows:

1 1

1 1

(), () (), ()0 0

{1,..., }
1 1 {0,..., 1} {0,..., 1}(), () (), ()

 () ()

max () () min
r r r r

r r r rj k

pp

N K
i j i j i k i k

k kj K
p k r R r Ri j i j i k i k

r r kr r j

d d
j k

v v
τ τ

+ +

+ +

∈

= = ∈ − ∈ −

≤
≤

    
    

+ − + →    
   
   

∑∑ ∑ ∑ (4.22)

Path Ik for the k-th object may be disjoint or not and must cross at fixed

alignment points or we have to dynamically determine these points (e.g. during

movement simulation/realization). In the first case we have an NP-hard

optimization problem and we can solve it using approximation algorithms for

finding disjoint paths (see chapter 3.4). In the second case we can use a two-stage

approach: (*) finding the best paths for K objects iteratively using methods for

finding the m-th (1st, 2nd, 3rd, etc.) best path for each of the K objects (Eppstein,

1999) and visiting specified nodes (Ibaraki, 1973; Ibaraki et al., 1978);

(**) synchronizing movement of K objects by solving problem (4.19)-(4.21) and

using algorithms described in chapter 4.2.2 (Tarapata, 2008d; 2009a).

The multicriteria approach to movement synchronization scheduling is considered

in chapter 4.3.

We can consider one of the extensions of problem (4.19)-(4.21): adding

a constraint as follows

1

1

(), ()0 max

{0,..., 1} (), ()

() , 1,
r r

r rk

i k i k

k
r R i k i k

d
k T k K

v
τ

+

+∈ −

+ ≤ =∑ (4.23)

we would like to find such a movement schedule that achieving the earliest

moment of destination node by the latest object is no greater than max *T τ≥ .

To solve the problem (4.19)-(4.21) with the additional constraint (4.23), in

generality, we define this problem in its changed form: for fixed paths Ik of each

k-th object to determine such xk,p, k=1,…,K, p=1,…., N that:

{1,..., }
1 1 1 1

max () () min
p pN K

p ji p ki
j K

p k i i

j x k xτ τ

∈

= = = =

    
+ − + →    

    
∑∑ ∑ ∑ (4.24)

with constraints:

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

117

1

()
N

kp
p

x FT k
=

≤∑ , k=1,...,K (4.25)

0kpx ≥ , k=1,...,K , p=1,...,N (4.26)

where xkp describes the time instance which is added to ()p kτ for the k-th object in

its p-th alignment point (node). It can be observed that '

1

() ()
p

p ki p
i

k x kτ τ

=

+ =∑ which

can be used in algorithms in chapter 4.2.2 as a modified (by algorithms) moment of

achieving the p-th alignment point by the k-th object. Therefore, if we denote
'max 'max '() ()p p pk kτ τ τ∆ = − , where 'max

pτ is defined like in (4.9), then function (4.24) has

an equivalent form of 'max

1 1

() min
N K

p
p k

kτ

= =

∆ →∑∑ and we obtain (4.19). Free time FT(k)

for the k-th object we define as: max() ()kRFT k T kτ= − .

We can observe that problem (4.19)-(4.21) is similar to a problem of task

scheduling on parallel processors (Leung, 2004). The following similarities exist:

(a) scheduling the problem before critical lines to minimize the sum of maximal

delays in alignment points (nodes); the p-th critical line is created by nodes

(1), (2),..., ()p p pi i i K ; (b) we have parts of the path (arcs) as tasks; (c) we have moved

objects as processors (K); (d) tasks are indivisible and dependent (the dependence

is defined by each of the arc ()
1

{1,..., }
(), ()

k

m m
G

m R
i k i k A−

∈

∀ ∈ belonging to the path for

each of the object). Differences: (a) tasks (arcs of the path) are assigned to

processors (objects) (we have no influence on this assignment) and we decide only

on the delays of the operation of processors (to increase realization time of tasks).

4.2.1.3. Formulation of movement synchronization problem with a group

pattern (MSSD)

In chapter 4.2.1.2 we have defined movement synchronization of many

objects with time (MSST): synchronization has been done considering achievement

times of checkpoints. Here, we consider movement synchronization using some

group patterns: in this case synchronization will be done according to some

movement patterns and taking into account keeping terrain distances between

objects resulting from a pattern. To define the MSSD problem we give some

definitions.

As a group pattern (j-th) of the K objects numbered from 0 to K–1 we

understand the following 2K-dimensional vector:

()0 0 1 1 1 1, , , , ..., ,j j j j

K Kx y x y x y
− −

∆ ∆ ∆ ∆ (4.27)

4. Models and Algorithms for Movement Synchronization

118

where x0, y0 describe coordinates of the reference object (e.g. vehicle of

commander).

With reference to this object we can set the location of the other objects in the

group. The pairs (),j j

k kx y∆ ∆ , 1, 1k K= − allow us to set coordinates of the k-th

object inside the j-th group pattern as follows:

() ()0 0, ,j j j j

k k k kx y x x y y= + ∆ + ∆ (4.28)

Additionally, we assume that there exists some a tolerance range δ

j for

values , j j

k kx y∆ ∆ , 1, 1k K= − . It means that coordinates of the k-th object in the j-th

group pattern are defined as follows:

() ()0 0, ,j j j j j j

k k k kx y x x y yδ δ= + ∆ ± + ∆ ± (4.29)

If coordinates of each object in a group satisfy (4.29) then we assume that the

j-th group pattern is kept. It is important to say that a group pattern (4.27) is

defined under the assumption that an angle α between the direction vector of the

group and axis 0y in the basic coordinate system is equal 0o. Hence, coordinates

(4.28) and (4.29) are determined using this assumption. Relation between

coordinates in the basic system 0xy and rotated 0XY with α angle is presented in

(4.31). Examples of typical movement group patterns are presented in Fig. 4.1. It

has been assumed that α=0o, that is the direction vector of the group cover 0y axis

of the basic coordinate system.

At the moment t current location of group is defined as follows:

()0 0 1 1 1 1(), (), (), (), ..., (), (),K KX t Y t X t Y t X t Y t α
− −

 (4.30)

where coordinates in (4.30) are determined in the coordinate system rotated with

angle α with relation to the basic coordinate system and α describes the angle

between the direction vector of the group and axis 0y in the basic coordinate

system. Relation between coordinates in the basic system 0xy and rotated 0XY with

angle α is the following:

() (), cos sin , sin cosj j j j j j

k k k k k kx y X Y X Yα α α α= ⋅ − ⋅ ⋅ + ⋅ (4.31)

If we denote with ()0 0(), ()x t y t the location of the reference object at the

moment t then the current, pattern location of the K considered objects grouped

with j-th group pattern in the basic coordinate system at the moment t is defined as

follows:

 ()0 0 1 1 1 1(), (), (), (), ..., (), ()j j j j

K Kx t y t x t y t x t y t
− −

 (4.32)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

119

where: 0() ()j j

k kx t x t x= + ∆ , 0() ()j j

k ky t y t y= + ∆ describe the coordinate of the k-th

object in the group according to the j-th pattern at the moment t in the basic

coordinate system.

Since the "distance" dj(t) of the current group location from the j-th group

pattern at the moment t we can understand the following function (with parameter

n>0):

()

−

=

= +∑
11

1

() () ()
k k

K
j n n n

x y
k

d t q t q t (4.33)

where:

() (), when () [() , ()]
()

0 , otherwisek

j j j j j
k k k k k

x

x t x t x t x t x t
q t

δ δ − ∉ − +

= 


 (4.34)

() (), when () [() , ()]
()

0 , otherwisek

j j j j j
k k k k k

y

y t y t y t y t y t
q t

δ δ − ∉ − +

= 


 (4.35)

Fig. 4.1. Examples of typical movement group patterns for K=5 objects

We also assume that we have set, for each k-th object in the group, the movement

path ()
0 1(,) = () , (), ..., (), ..., ()kRr

k k k ks t i k s i k i k i k t= = =
k k

I I

described in

(4.1) from the

source node 0() ki k s= to the destination node ()kR

ki k t= , 0, 1k K= − (apart from

4. Models and Algorithms for Movement Synchronization

120

how can we determine these paths; we can use methods from chapter 3).

Moreover, we assume that these paths assure us a satisfying condition, which

concerns with distances j j

kx δ∆ ± (see (4.29)) from group pattern, for each k-th

object in the group.

In the considered problem we want to set the movement speed for each object

in the group in such a way, to minimize the total terrain distances from the group

pattern in such moments when the reference object achieves each node on its path.

This problem is defined in detail as follows: we want to find such values of speed

1(), ()
0r r

k

i k i k
v

+
> for all objects on each arc ()

1(), ()+r ri k i k

of the path Ik, 1, 1kr R= − ,

0, 1k K= − , to minimize the value of the distance from group pattern defined as

below (MSSD problem):

0

1

() min
R

j
p

p

d t
=

→∑ (4.36)

with constraints: (4.20) and (4.21)

where tp denotes achieving the moment of the p-th node on the path for the

reference object (with number k=0),

1

1

(0), (0)
1

r r

p

p i i
r

t c
+

−

=

=∑ (4.37)

1

1

() | ()| | ()|
k k

K
j

p x p y p
k

d t q t q t
−

=

= +∑ (4.38)

and 1(), ()r ri k i k
c

+
 defined by (4.8), ()

kx pq t t= defined by (4.34), ()
ky pq t t= defined by

(4.35).

Let us denote with
(0)

()p pi
x t ,

(0)
()p pi

y t coordinates of the reference object (with

number 0) in the p-th node (0)pi on its path at the moment tp. Pattern coordinates

of the k-th object in the group according to the j-th pattern we calculate as follows:

(0)
() ()p

j j

k p p ki
x t x t x= + ∆ (4.39)

(0)
() ()p

j j

k p p ki
y t y t y= + ∆ (4.40)

Coordinates xk(tp), yk(tp) of the current location of the k-th object in the group at the

moment tp we calculate according to the following rule. First, we must determine

between which nodes on the path the k–th object is located at moment tp. We notice

that the k-th object at the moment tp is located between nodes on its path with such

numbers *
kr and * 1kr + for which the following formula is fulfilled:

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

121

*

* 1(), ()
2

k

r r
k

r

pr i k i k
r

t c t
−

=

= <∑ and

*

* 1

1

1 (), ()
2

k

r r
k

r

pr i k i k
r

t c t
−

+

+

=

= >∑ (4.41)

If

*

* 1(), ()
2

k

r r
k

r

pr i k i k
r

t c t
−

=

= =∑ , then the i-th object is located inside the node of its path

with number *
ir

at the moment tp. Then, coordinates of the current location of the

i-th object at the moment tp are the following:
*

() (())kr

k px t x i k= ,
*

() (())kr

k py t y i k= ,

where
*

(())krx i k ,
*

(())kry i k denote coordinates of node
*

()kri k , in which the i-th object

is located. Otherwise, when the i-th object is located between nodes with numbers
*

kr and * 1kr + , the coordinates of the current location of the object are set according

to the procedure described in Fig. 4.2. In this figure dist denotes the distance

covered in the time of *
k

p r
t t− with the k-th object moving from node

*

()kri k to node

* 1()kri k+

. This distance is calculated from the following formula:

+

= ⋅ −* * *1
,() ()

()
r rk k k

k
p ri k i k

dist v t t (4.42)

where
+

* * 1
,() ()r rk k

k

i k i k
v

denotes the speed of the k-th object between nodes

*

()kri k and

* 1()kri k+

.

Fig. 4.2. Coordinates ((), ())k p k px t y t

determining

Having dist we can calculate a and b from the system of equations:

2 2 2dist a b

A a

B b

 = +




=

 (4.43)

where
* *1| (()) (())|k kr rA y i k y i k+

= − ,
* *1| (()) (())|k kr rB x i k x i k+

= − . We obtain:

4. Models and Algorithms for Movement Synchronization

122

2

2

2

, when 0

1

0 , when 0

dist
B

Ab
B

B


≠


= +

 =

 (4.44)

, when 0

 , when 0

A b
B

a B
dist B

⋅
≠

= 


=

 (4.45)

Coordinates of the current location of the i-th object at the moment tp are used in

equations (4.34), (4.35) and we can calculate them as follows:

* * *

* * *

1

1

(()) , when (()) (())
()

(()) , when (()) (())

k k k

k k k

r r r

k p r r r

x i k b x i k x i k
x t

x i k b x i k x i k

+

+


+ <

= 
− ≥

 (4.46)

* * *

* * *

1

1

(()) , when (()) (())
()

(()) , when (()) (())

k k k

k k k

r r r

k p r r r

x i k a y i k y i k
y t

x i k a y i k y i k

+

+


+ <

= 
− ≥

 (4.47)

Problem (4.36) with constrains (4.20) and (4.21) is a nonlinear programming

problem and may be solved using one of commercial optimization packages

(GAMS, MATHEMATICA) by invoking appropriate functions.

Another approach to define a group pattern has been presented in (Tarapata,

2007b). In this paper a multicriteria weighted graph similarity method for

structural patterns recognition has been described. This approach may also be used

for planning group movement with group patterns.

4.2.1.4. Example of the GAMS model for the MSST problem

The source code of the GAMS model for solving the MSST problem with

parameters defined in Table 4.3 (for FT(k) in Table 4.4, chapter 4.2.2.3) is presented

below. We set the following equivalence between notations being used in the

MSST model and in the source code of the GAMS model (notation x≡y describes

that x in the GAMS model is equivalent to y in the MSST model):

tau(k,p) ()p kτ≡ , FT(k) ()FT k≡ , max maxc(k,p) () ()p p pk kτ τ τ≡ ∆ = − ,

x(k,p) kpx≡ ,

1

cost_p(k,p)
p

ki
i

x
=

≡∑ ,
{1,..., }

1

max(p) max ()
p

p ji
j K

i

j xτ

∈

=

 
≡ + 

 
∑ , z ≡ value of objective function.

Sets

k objects for movement

/ 1, 2, 3 /

p alignment points (checkpoints)

/ 1, 2, 3, 4 / ;

Alias (p, pp)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

123

Alias (k, kk)

Table

tau(k,p) table of values from (4.5)

 1 2 3 4

 3 2 13 16 17

 2 5 9 13 16

 1 7 12 14 15;

Parameter

FT(k) free times

/ 3 1

 2 2

 1 0 /

Parameter

c(k,p) table delta tau max p(k);

c(k,p)=smax(kk,tau(kk,p))-tau(k,p);

Variables

x(k,p) decision variable in (4.24)-(4.26)

cost_p(k,p) partial sum of x(k,p) from (4.24)

max(p) the first component of sum from (4.24)

z value of objective function (4.24);

Positive Variable x;

Equations

partial_cost(k,p) partial sum of x(k,p) from (4.24)

max_eq(p) the first component of sum from (4.24)

FT_constr(k) the k-th inequality from (4.25)

objective value of objective function (4.24);

partial_cost(k,p)..cost_p(k,p)=e=sum(pp$(ORD(pp)le ORD(p)),x(k,pp));

max_eq(p) .. max(p)=e=smax(k,tau(k,p)+cost_p(k,p));

FT_constr(k) .. sum(p, x(k,p)) =l= FT(k);

objective .. z =e= sum((k,p),max(p)- (tau(k,p)+cost_p(k,p)));

Model Schedule /all/ ;

Solve Schedule using dnlp minimizing z ;

Display x.l, z.l;

Solving this problem using the GAMS/CONOPT solver we obtain:

---- 61 VARIABLE x.L decision variable in (4.24)-(4.26)

 1 4

2 2.000

3 1.000

---- 61 VARIABLE z.L = 14.000 value

 of objective function 4.24).

4. Models and Algorithms for Movement Synchronization

124

The obtained result is as follows: x(2,1) 2= , x(3,4) 1= and remaining values

of x(k,p) are equal to 0. The value of the objective function is equal to 14.

4.2.2. Scheduling Algorithms for Movement Synchronization

For solving the MSS problem two movement scheduling algorithms are

presented: the first (MSA.1) is for solving problem (4.19)-(4.21) and the second

(MSA.2) is for solving problem (4.24)-(4.26). Let us denote with ' ()p kτ , as it has been

written in chapter 4.2.1.2, modified (by algorithms) the moment of achieving the

p-th alignment point by the k-th object and ' '() () ()p p pk k kτ τ τ∆ = − .

4.2.2.1. Dynamic programming algorithm

The first algorithm MSA.1 is based on the dynamic programming approach.

Algorithm MSA.1

For each p∈{1,...,N} recurrently compute the modified moments of

achieving alignment nodes for K objects:

 ()
' '

1
{1,..., }

() max () () , for 1p p p
j K

k j j k Kτ τ τ
−

∈

= ∆ + ≤ ≤ (4.48)

and in addition
' 0
0 0() () ()k k kτ τ τ= = , 1 k K≤ ≤ .

Let us note that '

{1,..., }
() 0p

k K
kτ

∈

∀ ∆ ≥ . It results from (4.48) and from the

assumption that 1

1, 0 , 1
 () () 0r r

k K r Rk

k kτ τ

+

= = −

∀ ∀ > ≥ . Having '

{1,..., } {1,..., }
()p

p N k K
kτ

∈ ∈

∀ ∀ and

' ()p kτ∆ , we can compute as follows: ' '
()

{1,..., } {0,..., }
 () : () ()

k

r r
q r

k K r R
k k kτ τ τ

∈ ∈

∀ ∀ = + ∆ ,

{ }() max {1,..., } : ()pq r p N r k r= ∈ ≤ and
1

1

(), ()'

' 1 '(), (){1,..., } {0,..., }
 :=

() ()

r r

r r

k

i k i kk

r ri k i kk K r R

d
v

k kτ τ

+

+

+

∈ ∈

∀ ∀

−

. The

complexity of the MSA.1 algorithm is equal to ()
2K NΘ but we can obtain

complexity ()KNΘ because for each p∈{1,…,N} ' ' '(1) (2) ... ()p p p Kτ τ τ= = = .

The idea of the algorithm is presented in Fig. 4.3 and the values of some

characteristics in Table 4.1.

Table 4.1. Values of τ ()p k and *()p kτ∆ for data from Fig. 4.3

k
()p kτ *()p kτ∆

p=1 p=2 p=3 p=4 p=1 p=2 p=3 p=4
3 2 13 16 17 5 -1 -2 -2

2 5 9 13 16 2 3 1 -1

1 7 12 14 15 0 0 0 0

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

125

Fig. 4.3. An idea of the MSA.1 algorithm: (a) paths for K=3 objects with times of achieving

alignment nodes ip(k) on paths for each p=1,…4 and k=1,…,3; (b) the result of algorithm MSA.1

– times of achieving alignment nodes by K objects have the same value equalling 25

Theorem 4.1

Algorithm MSA.1 solves the problem (4.19)-(4.21) optimally.

Proof:

For fixed p∈{1,...,N} the following condition is fulfilled: ' ' '(1) (2) ... ()p p p Kτ τ τ= = = ,

hence ()
'max '

1

() 0
K

p p
k

kτ τ

=

− =∑ , because the condition is fulfilled for each p∈{1,...,N}, so

we obtain: ()
'max '

1 1

() 0
N K

p p
p k

kτ τ

= =

− =∑∑ .

♦

It is easy to notice, that MSA.1 algorithm simultaneously minimizes

criteria C.2.2, C.2.3 and C.2.4.

4. Models and Algorithms for Movement Synchronization

126

Let us note that if two alignment nodes p and p+1 are neighbouring nodes on

a path for the k-th object, that is the following formula is fulfilled
1

1() () () ()r r
p pr k i k r k i k+

+

= ⇒ = and then from (4.8) and (4.48) results that:

() ()

()

()

() ()1

() ()1

' ' '
1 1 1

{1,..., } {1,..., }

'
1 1 1 (), (){1,..., }

'
1 (), (){1,..., }

() max () () max () () ()

 = max () () ()

 max ()

r l r lp p

r l r lp p

p p p p p p
l K l K

p p p i l i ll K

p i l i ll K

k l l l l l

l l l c

l c

τ τ τ τ τ τ

τ τ τ

τ

−

−

− − −

∈ ∈

− − −

∈

−

∈

= ∆ + = − + =

− + + =

= + () ()1

'
1 (), (){1,..., }
() max r l r lp pp i l i ll K
k cτ

−−

∈

= +

 (4.49)

where () ()1 (), ()
r l r lp pi l i l

c
−

 is defined by (4.8).

Algorithm MSA.1, even though is very simple, has interesting properties

(Theorem 4.2 and Theorem 4.3).

Theorem 4.2

Necessary conditions for obtaining, for each solution ' ()N kτ

from MSA.1 algorithm,

that:
' *

{1,..., }
max () ()N N

k K
k kτ τ

∈

≤

(4.50)

are following:

1o. *

{1,..., } {1,..., }
() 0p

p N k K
kτ

∈ ∈

∀ ∀ ∆ ≥

(4.51)

2o. * * *
1 2

{1,..., }
() () ... ()N

k K
k k kτ τ τ

∈

∀ ∆ ≤ ∆ ≤ ≤ ∆

(4.52)

Proof:

Ad.1o

Let us assume conversely, that

*
'

' {1,..., } ' {1,..., }
(') 0p

p N k K
kτ

∈ ∈

∃ ∃ ∆ <

Then from (4.11) results that *

' '() (')p pk kτ τ< . But from (4.48) results that for each

{1,..., }k K∈ the following equality is true: ()
' '

' ' 1 '
{1,..., }

() max () ()p p p
l K

k l lτ τ τ
−

∈

= ∆ + , because

the following condition is fulfilled: '
' 1

{1,..., }
() 0p

l K
lτ

−

∈

∀ ∆ ≥ , hence ' *
' ' '(') (') ()p p pk k kτ τ τ≥ > .

If we place k’=k* and p’=N, then we obtain that ' * *() ()N Nk kτ τ> . This contradiction

ends the first part of the proof.

Ad.2o

Let us assume conversely, that
* *
' ' 1

' {1,..., 1} ' {1,..., }
(') (')p p

p N k K
k kτ τ

+

∈ − ∈

∃ ∃ ∆ > ∆

(4.53)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

127

and that the following conditions, resulting from the first part of the proof, are

satisfied:
* *
' ' 1

{1,..., }
() 0, () 0p p

k K
k kτ τ

+

∈

∀ ∆ ≥ ∆ ≥

(4.54)

We will show that if formula (4.53) is fulfilled, then ' * *
' 1 ' 1() ()p pk kτ τ
+ +

> . Let us

assume that p’=1. Then from (4.54) we have that: * *
1 2

' {1,..., }
(') (')

k K
k kτ τ

∈

∃ ∆ > ∆ or

equivalently

* *
1 1 2 2

' {1,..., }
() (') () (')

k K
k k k kτ τ τ τ

∈

∃ − > −

(4.55)

From (4.48) and (4.54) results that

τ τ τ

∈

= =

' *
1 1 1

{1,..., }
(') max () ()

k K
k k k

(4.56)

() ()
' ' *
2 1 1 2 1 1 2

{1,..., } {1,..., }
(') max () () () max () () ()

k K k K
k k k k k k kτ τ τ τ τ τ τ

∈ ∈

= − + = − +

(4.57)

Taking into account (4.55) we obtain:

* *
1 1 2 2() (') (') () 0k k k kτ τ τ τ− + − > (4.58)

or equivalently

* *
1 1 2 2() (') (') ()k k k kτ τ τ τ− + > (4.59)

If we place (4.57) into (4.58) we obtain:

()
' * * *
2 1 1 2 1 1 2 2

{1,..., }
(') max () () () () (') (') ()

k K
k k k k k k k kτ τ τ τ τ τ τ τ

∈

= − + ≥ − + >

If we set k’=k*, then ' * *
2 2() ()k kτ τ> and we obtain a contradiction with (4.50).

Therefore we have proved that apart from (4.51), the condition (4.52) is necessary

to fulfil (4.50).

♦

Theorem 4.3

Conditions (4.51) and (4.52) are jointly sufficient to satisfy formula (4.50) for each

solution ' ()N kτ obtained from algorithm MSA.1.

Proof:

To prove the thesis of the theorem we need to show that if (4.51) and (4.52) are

fulfilled then for each p=1,...,N

' * *() ()p pk kτ τ≤

(4.60)

4. Models and Algorithms for Movement Synchronization

128

We will prove it by induction on p. From (4.56) results that formula (4.60) is true

for p=1. Let us place p=m and let us assume that (4.60) is true. We obtain

()
' * ' *

1
{1,..., }

() max () () ()m m m m
l K

k l l kτ τ τ τ
−

∈

= ∆ + ≤

(4.61)

We will show that formula (4.60) is true for m+1. We have

 () ()
' * ' '

1 1 1
{1,..., } {1,..., }

() max () () max () () ()m m m m m m
l K l K

k l l l l lτ τ τ τ τ τ
+ + +

∈ ∈

= ∆ + = − + (4.62)

From formula (4.61) results that ' * *() ()m mk kτ τ≤ , from assumption (4.51)

results that *

{1,..., }
() ()p p

l K
k lτ τ

∈

∀ ≥ and from assumption (4.52) that

* *
1 1

{1,..., }
() () () ()m m m m

l K
k l k lτ τ τ τ

+ +

∈

∀ − ≤ − , hence we can write (4.62) as follows:

() ()

()

' * ' *
1 1 1

{1,..., } {1,..., }

* *
1 1 1 1

{1,..., }

() max () () () max () () ()

 max () () () ()

m m m m m m m
l K l K

m m m m
l K

k l l l k l l

k l l k

τ τ τ τ τ τ τ

τ τ τ τ

+ + +

∈ ∈

+ + + +

∈

= − + ≤ − + ≤

≤ − + ≤

Q.E.D.

♦

The main conclusion from Theorem 4.2 and Theorem 4.3 is as follows: if for

each k=1,…,K we set rN (k)=Rk then from (4.60) we have: *' *

{1,..., }
max () ()k kR R

k K
k kτ τ

∈

≤ . It

means that the value of *
τ has not changed, i.e. the latest (the most delayed)

moment of achieving destination nodes by all objects have not changed, and

then constraint (4.23) is fulfilled. It means that MSA.1 optimally also solves

problems (4.19)-(4.21) with constraint (4.23).

In Fig. 4.4 we present conclusions from Theorem 4.2 and Theorem 4.3.

Table 4.2 presents some characteristics of the problem from Fig. 4.4.

Table 4.2. Values of ()p kτ and *()p kτ∆ for data from Fig. 4.4

k
()p kτ *()p kτ∆

p=1 p=2 p=3 p=4 p=1 p=2 p=3 p=4
3 1 5 11 13 3 3 3 4

2 2 4 9 10 2 4 5 7

1 4 8 14 17 0 0 0 0

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

129

Fig. 4.4. Paths for K=3 objects satisfying conditions of Theorem 4.2 and Theorem 4.3: (a) times

of achieving alignment nodes ip(k) on the paths for each p=1,…4 and k=1,…,3; (b) result

of algorithm MSA.1 – times of achieving alignment nodes by K objects have the same value

equalling 17) and they are not greater than for object k*=1

Theorem 4.4

Let { }
* *

1() max () (),0d
p p pk k kτ τ τ

−

∆ = ∆ − ∆ and
{1,..., }

max ()d d
p p

k K
kτ τ

∈

∆ = ∆ be defined. If

*

{1,..., } {1,..., }
 () 0p

p N k K
kτ

∈ ∈

∀ ∀ ∆ ≥ then the following formula is fulfilled:

' * *
'

{1,..., }
' {1,..., }

'

() () d
p p p

p N
p N

p p

k kτ τ τ

∈

∈

≤

∀ = + ∆∑ (4.63)

Proof:

Let us note that if * * *
1 2

{1,..., }
() () ... ()N

k K
k k kτ τ τ

∈

∀ ∆ ≤ ∆ ≤ ≤ ∆ (the fulfilment of the

condition (4.52)) then the following formula is fulfilled :

{ }
* *

1
{1,..., }

() max () (),0 0 0d d
p p p p

p N
k k kτ τ τ τ

−

∈

∀ ∆ = ∆ − ∆ = → ∆ =

4. Models and Algorithms for Movement Synchronization

130

hence ' * *() ()p pk kτ τ= .

To prove that formula (4.63) is true we will show, taking into account (4.48), that

for each p=1,…,N the following formula is fulfilled:

()
' * * '

' 1
{1,..., }

' {1,..., }

'

() () max () ()d
p p p p p

k K
p N

p p

k k k kτ τ τ τ τ
−

∈

∈

≤

= + ∆ = ∆ +∑ (4.64)

We will prove, by induction on p, that the left side *
'

' {1,..., }

'

() d
p p

p N

p p

L kτ τ

∈

≤

= + ∆∑ of the

formula (4.64) is equal to the right side ()
'

1
{1,..., }

max () ()p p
k K

R k kτ τ
−

∈

= ∆ + , that is L=R.

For p=1⇒ *
1 1() dL kτ τ= + ∆ , because { }

* *
1() max () (),0d

p p pk k kτ τ τ
−

∆ = ∆ − ∆ ,

{1,..., }
max ()d d

p p
k K

kτ τ

∈

∆ = ∆ and from (4.11) results that { }
* *

1 0 1() max () (),0 0d k k kτ τ τ∆ = ∆ − ∆ =

for each k=1,…,K, hence 1 0d
τ∆ = and *

1 ()L kτ= .

The right side of the formula (4.64) is equal:

() ()
' ' *
0 1 0 0 1 1 1

{1,..., } {1,..., } {1,..., }
max () () max () () () max () ()

k K k K k K
R k k k k k k kτ τ τ τ τ τ τ

∈ ∈ ∈

= ∆ + = − + = =

and we have obtained: L=R.

For p=2:

{ }()

{ }()

* *
2 1 2 2 2

{1,..., }

* * *
2 1 2

{1,..., }

* * *
1 2 2

{1,..., }

() () max ()

 = () max max () (),0

 = max max () (),0 ()

d d d

k K

k K

k K

L k k k

k k k

k k k

τ τ τ τ τ

τ τ τ

τ τ τ

∈

∈

∈

= + ∆ + ∆ = + ∆ =

+ ∆ − ∆ =

∆ − ∆ +

() ()

() ()

' '
1 2 1 1 2

{1,..., } {1,..., }

* *
1 1 2 1 2

{1,..., } {1,..., }

max () () max () () ()

 = max () () () max () ()

k K k K

k K k K

R k k k k k

k k k k k

τ τ τ τ τ

τ τ τ τ τ

∈ ∈

∈ ∈

= ∆ + = − + =

− + = ∆ +

From analysis of L and R we obtain, that to satisfy L=R it is required that
1 2, {1,..., }l l K∈

∃

for which

{ }
* * * *
1 1 2 1 2 1 2 2 2max () (),0 () () ()l l k l lτ τ τ τ τ∆ − ∆ + = ∆ +

that is

{ }
* * * * *

1 1 1 2 2 1 2 2 1 2 2 2max () () () () (), () () ()k l k l k k l lτ τ τ τ τ τ τ τ− − + + = ∆ +

Hence

{ }
* * *

1 1 1 2 1 2 1 1 2 2 2max () () (), () () () ()k l l k k l lτ τ τ τ τ τ τ− + = − + (4.65)

The equality (4.65) is always true because *
1 1 1() () 0k lτ τ− ≥ (theorem assumption),

hence * *
1 1 1 2 1 2() () () ()k l l kτ τ τ τ− + ≥ and L=R for 1 2l l= .

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

131

Let us set p=m=2 and we will prove that formula (4.63) is true for m+1. Let us note

that
' * * ' * * *

' 1 1
' {1,..., }

'

() () () () ()d d
p p p p p p p

p N

p p

L k k k k kτ τ τ τ τ τ τ
− −

∈

≤

= = + ∆ = + ∆ − +∑

For m+1 we obtain:
' * * *

1 1() () ()d
m m m mL k k kτ τ τ τ

+ +

= + ∆ − +

()
'

1
{1,..., }

max () ()m m
k K

R k kτ τ
+

∈

= ∆ +

and

{ }()

{

}

' * * * * *
1 1

{1,..., }

* * * * ' *
1 1

* * ' *{1,..., }
1

() max max () (),0 () ()

max () () () () (),
 max

 () () ()

m m m m m
k K

m m m m m

k K
m m m

L k k k k k

k k k k k

k k k

τ τ τ τ τ

τ τ τ τ τ

τ τ τ

+ +

∈

+ +

∈

+

= + ∆ − ∆ − + =

 ∆ − ∆ − + +

 =

 
− + + 

To satisfy L=R it is needed that
1 2, {1,..., }l l K∈

∃ for which:

{

}

* * * * ' *
1 1 1 1

* * ' * '
1 2 1 2

max () () () () (),

 () () () () ()

m m m m m

m m m m m

l l k k k

k k k l l

τ τ τ τ τ

τ τ τ τ τ

+ +

+ +

∆ − ∆ − + +

− + + = ∆ +

that is

{

}

* * * * ' *
1 1 1 1 1

* * ' * '
1 2 1 2

max () () () () () () (),

 () () () () ()

m m m m m m m

m m m m m

k l k l k k k

k k k l l

τ τ τ τ τ τ τ

τ τ τ τ τ

+ + +

+ +

− − + − + +

− + + = ∆ +

Reducing this formula, we obtain:

{ }

' * * * ' *
1 1 1 1

'
1 2 2 2

max () () (), () () ()

() () ()

m m m m m m

m m m

l l k k k k

l l l

τ τ τ τ τ τ

τ τ τ

+ +

+

− + − + + =

= − +

(4.66)

If we set *
1 2l l k= = then the equality (4.66) is fulfilled. The equality is fulfilled too,

for any 1 2l l= such that * *
1 1 1 1() () () ()m m m ml l k kτ τ τ τ

+ +

− ≥ − .

♦

Conclusions from Theorem 4.4:

1o

()

()

' ' *

{1,..., } {1,..., }

*

{1,..., }
{1,..., }

max () () max () ()

 () max () ()

k k

k

R R

N N
k K k K

Rd
N p N

k K
p N

k k k k

k k k

τ τ τ τ

τ τ τ τ

∈ ∈

∈

∈

= + − =

= + ∆ + −∑

2o For each ()
max *

{1,..., }
{1,..., }

() max () ()kRd
N p N

k K
p N

T k k kτ τ τ τ

∈

∈

≥ + ∆ + −∑ the following

formula is fulfilled: ()
'max '

1 1

() 0
N K

p p
p k

kτ τ

= =

− =∑∑ .

4. Models and Algorithms for Movement Synchronization

132

 From conclusions 1o and 2o results that for each Tmax, which satisfy condition

1o the following formula is true: ' max

{1,..., }
max ()kR

k K
k Tτ

∈

≤ , that is *
τ has no greater value

than Tmax and simultaneously the following condition is fulfilled:

()
'max '

1 1

() 0
N K

p p
p k

kτ τ

= =

− =∑∑ . We can check condition 2o in time of ()KNΘ .

4.2.2.2. Cost-profit approximation algorithm

We can present the heuristic (greedy) algorithm MSA.2, which

solves the problem (4.24)-(4.26) (it is equivalent to the problem (4.19)-(4.21)

with constraint (4.23)). We define the notations used inside the algorithm: card(x) –

cardinality of the set x; ()pa k – time instance which is added to ()p kτ . We also

define three sets of checkpoints which satisfy some conditions:

{ }{ }

max: () 0() ,..., ps p kP k s N τ

+

∈ ∆ >= (4.67)

{ }{ }

max: () () 0() , ..., p ps p k a kP k s N τ

≥

∈ ∆ − ≥= (4.68)

{ }{ }

max: () () 0() , ..., p ps p k a kP k s N τ

<

∈ ∆ − <= (4.69)

Functions Z(⋅) and L(⋅) describe "profit" (Z) and "cost" (L) of decreasing max()p kτ∆

with value ()
ksa k , ()

kk ss P k+

∈ :

()
max

()

()(()) () ()
kk k

sk

ss s p

p P k

P kZ a k a k card kτ

<

≥

∈

= ⋅ + ∆∑

(4.70)

()

max

()

() ()(()) 1
kk

sk

p ss

p P k

k a kL a k K τ

<

∈

∆ −= ⋅− ∑

(4.71)

Value , ,: ()k p k p px x a k= + (in step 10 of the MSA.2 algorithm) is equal to the sum

of ()pa k values that are determined for all iterations of MSA.2 and for every k and

p. The idea of the algorithm MSA.2 consists of decreasing the value of

OBJ= 'max

1 1

()
N K

p
p k

kτ

= =

∆∑∑ by decreasing the value of 'max()p kτ∆ for any k and p.

To set an examination order vector KO of K objects in the MSA.2 algorithm

we use an object order ObjOrder∈{0,…,3} strategy (the 3rd step of the algorithm):

ObjOrder=0 – set elements of KO iteratively, from k=1 to k=K; ObjOrder=1 – set

elements of KO randomly, with uniform distribution on the set {1,…,K};

ObjOrder=2 – set elements of KO iteratively, starting from such a k, which

corresponds to the first greatest, second greatest, …, the K-th greatest values of the

coordinates of the vector FT; ObjOrder=3 – set elements of KO iteratively, starting

from such a k which corresponds to the first smallest, second smallest,…, the K-th

smallest values of the coordinates of the vector FT.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

133

Algorithm MSA.2

Given sets: Ik, Tk, IPk, TPk for each k=1,…,K and values

ObjOrder, Strategy;

Initialize:
{1,..., } {1,..., }

() : 0p
k K p N

a k
∈ ∈

∀ ∀ = ;
,

{1,..., } {1,..., }
: 0k p

k K p N
x

∈ ∈

∀ ∀ = ; counter:=N;

* *

{1,..., }
() : () ()k kR R

k K
FT k k kτ τ

∈

∀ = − ; 'max max

{1,..., } {1,..., }
() : ()p p p

k K p N
k kτ τ τ

∈ ∈

∀ ∀ ∆ = − ;

1. WHILE
() ()

{1,..., }
() 0 >0

k K
FT k

∈

∃ > ∧ counter DO

2. counter:=0;

3. To determine KO vector using ObjOrder;

3a. FOR k=KO[1],…,KO[K] DO

4. IF () 0FT k > THEN

5. Use current Strategy to find ks and ()
ksa k ;

6. IF >() 0
ks

a k THEN

7. 'max 'max

{ ,..., }
() : () ()

k
k

p p s
p s N

k k a kτ τ

∈

∀ ∆ = ∆ − ;

8. 'max'max 'max

{1,..., }()
() () : ()

sk

pp p
j Kp P k

kj j ττ τ
<

∈∈

∆∀ ∀ ∆ = ∆ +
;

9. () : () ()
ksFT k FT k a k= − ;

10.
, ,: ()

k k kk s k s sx x a k= + ;

11. counter:=counter+1; () : 0;
ksa k =

12. END IF;

13. END IF;

14. END FOR;

15. END WHILE.

To find values of 1 ()ks P k+

∈ and { }(
'max() 0, min (), ()

k ks sa k k FT kτ ∈ ∆  we use

Strategy∈{0,…,4} (the 5th step of the algorithm): Strategy=0 – finds such a value sk

and maximal value ()
ksa k for which condition (()) (())

k ks sZ a k L a k> is fulfilled;

Strategy=1 – find such a value sk and value ()
ksa k for which value

(()) (())
k ks s

Z a k L a k− is maximal and positive; Strategy=2 – find such a value sk N

times and randomly ()
ksa k for which value (()) (())

k ks sZ a k L a k− is maximal and

positive; Strategy=3 – find N times randomly such values sk and ()
ksa k for which

the value (()) (())
k ks sZ a k L a k− is maximal and positive; Strategy=4 – like for

Strategy=3 but we draw values sk and ()
ksa k

only one time.

For example, when ObjOrder=0 and Strategy=0, the OBJ will be decreased

when we select such a maximal value of { }(
'max() 0, min (), ()

k ks sa k k FT kτ ∈ ∆  for any

1 ()ks P k+

∈ that (()) (())
k ks sZ a k L a k> . Let us take into account the second row

of Table 4.4 (for k=2). It is profitable to set a1=2=min{max{2,4,3,1}, 2, 2}, because

4. Models and Algorithms for Movement Synchronization

134

when we decrease values of max(2)pτ∆ for p∈ 1 (2)P≥ ={1, 2, 3} then our "profit"

(decreasing the value of OBJ) is equal:

 ()

1

max
1 1 1

(2)

((2)) (2) (2) 2 3 1 7(2) p

p P

Z a a card P τ

<

≥

∈

= ⋅ + ∆ = ⋅ + =∑ .

"Cost" is equal ()

1

max
11

(2)

(2) (2)((2)) 2 13 1 p

p P

aL a τ

<

∈

∆ −= ⋅ = ⋅− ∑ (increasing the value of

OBJ). Afterwards, in steps 7-9 we decrease the value of 'max()p kτ∆ and FT(k) with

()
ksa k for all kp s≥ . In the case of max() () 0

kp sk a kτ∆ − < in step 7, we must increase

this value like in step 8. The algorithm tries to decrease the value of OBJ until the

free time FT(k) for all k will be equal to zero or when () 0
ksa k > (for which the

condition (()) (())
k ks sZ a k L a k> is fulfilled) does not exist for any k and p (variable

counter=0).

Let { }
min max max

{1,.., }
() min () , if () 0p p p p

p N
k k kτ τ τ τ τ

∈

∆ = − − > and min() 1kτ∆ = , if

max () 0p p kτ τ− ≤ . Iteration number LWHILE of the WHILE loop can be estimated as

follows:
min{1,..., }

()
max

()
WHILE

k K

FT k
L

kτ
∈

 
<  

∆ 
. It is easy to observe that the complexity of

separate steps of the algorithm is as follows: step 5 – O(N2), step 7 – O(N), step 8 –

O(KN), steps 9-11 – O(1). Steps 4-14 are realized in the FOR loop K times, hence the

complexity of the algorithm MSA.2 is equal ()()
2 2

WHILEO L K N KN+ .

It is possible to improve the value of the objective function (4.19) (and, in

consequence, (4.24)) and computational time in the MSA.2 algorithm using

a preprocessing step (algorithm MSA.2.0). In the MSA.2.0 algorithm we try to

decrease value of objective function (4.19) by decreasing 'max

{1,..., }
()p

p N
kτ

∈

∀ ∆ values (for

each k-th object), to obtain all non-negative values of 'max()p kτ∆ (like in the MSA.2

algorithm). Let us note that the method of the value of the ()
ksa k selection in the

4th step of the algorithm guarantees, that the value of the cost function will be

equal (()) 0
ksL a k = (see (4.71)) because of ()sP k<

= ∅ . After running the MSA.2.0

algorithm, we start the MSA.2 algorithm taking into the initialization step the

values ,
{1,..., } {1,..., }

k p
k K p N

x
∈ ∈

∀ ∀ ,
{1,..., }

()
k K

FT k
∈

∀ and 'max

{1,..., } {1,..., }
()p

k K p N
kτ

∈ ∈

∀ ∀ ∆ obtained from the

MSA.2.0 algorithm. Computational complexity of the MSA.2.0 algorithm can be

estimated as follows: external loop FOR realizes K times, number of iteration LWHILE

of the WHILE loop for fixed k is bounded by the value LWHILE (like in the MSA.2

algorithm), step 4 has O(N) complexity, and steps 6-8 – O(N). Hence, the total

complexity of the MSA.2.0 algorithm is equal ()WHILEO KL N .

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

135

Algorithm MSA.2.0

Given sets: Ik, Tk, IPk, TPk for each k=1,…,K ;

Initialize:
{1,..., } {1,..., }

() : 0p
k K p N

a k
∈ ∈

∀ ∀ = ;
,

{1,..., } {1,..., }
: 0k p

k K p N
x

∈ ∈

∀ ∀ = ; Exit:=false;

* *

{1,..., }
() : () ()k kR R

k K
FT k k kτ τ

∈

∀ = − ; 'max max

{1,..., } {1,..., }
() : ()p p p

k K p N
k kτ τ τ

∈ ∈

∀ ∀ ∆ = − ;

1. FOR k=1,…,K DO

2. WHILE Exit=false DO

3. IF FT(k)>0 THEN

4. Find such a minimal value
1 ()ks P k+

∈ and maximal value

{ }

'max

{ ,..., }
() 0, min max (), ()

k
k

s p
p s N

a k k FT kτ

∈

 
∈ ∆  

, for which

 condition 'max

{ ,..., }
() () 0

k
k

p s
p s N

k a kτ

∈

∀ ∆ − ≥ is satisfied;

5. IF () 0
ksa k > THEN

6. 'max 'max

{ ,..., }
() : () ()

k
k

p p s
p s N

k k a kτ τ

∈

∀ ∆ = ∆ − ;

7. () : () ()
ks

FT k FT k a k= − ;

8.
, ,

: ()
k k kk s k s s

x x a k= + ;

9. ELSE

10. Exit=true;

11. END IF;

12. ELSE

13. Exit=true;

14. END IF;

15. END WHILE;

16. END FOR;

4.2.2.3. Numerical example of using the algorithms

Presented in Fig. 4.5 are examples of using MSA.1 and MSA.2 algorithms

(without using MSA.2.0) for K=3 objects and N=4 checkpoints. It can be observed

(Table 4.3) that the value of the criterion function (4.19) before using the MSA.2

algorithm is equal to 20 (sum of values in the table excluding the last column) and

after using the MSA.2 algorithm (Table 4.5) equals 14. Table 4.4 presents initial

values of functions 'max()p kτ∆ and FT(k) before running algorithm MSA.2 (it has

been assumed that max *T τ=). Table 4.5 contains final values of these functions,

after running the MSA.2 algorithm. Values of kpx determined by the algorithm are

equal zero excluding two values: 3,4 1x = , 2,1 2x = . Let us note that the same

solution has been obtained solving the GAMS model in chapter 4.2.1.4. Taking into

account values of kpx and formula '

1

() ()
p

p p ki
i

k k xτ τ

=

= +∑ we can obtain modified

moments of achieving alignment nodes by all objects (Table 4.6). Taking into

account the explanation presented in chapter 4.2.2.1 (after defining algorithm

4. Models and Algorithms for Movement Synchronization

136

MSA.1), values of ' ()p kτ and geometric distances 1(), ()r ri k i k
d

+
 between nodes

1(), ()r ri k i k+ we can calculate modified velocities 1

'

(), ()r r

k

i k i k
v

+
 as follows:

1

1

(), ()'

' 1 '(), (){1,..., } {0,..., 1}
 :=

() ()

r r

r r

k

i k i kk

r ri k i kk K r R

d
v

k kτ τ

+

+

+

∈ ∈ −

∀ ∀

−

Fig. 4.5. (a) Node-disjoint vector of the shortest paths for K=3 objects with achieved times of
each N=4 alignment nodes for each object; (b) Results of realization of the MSA.1 (regular

line) and the MSA.2 (dashed line) algorithms

In Table 4.7 results of running the MSA.2.0 algorithm (before running MSA.2)

are shown. From the table results that in this preprocessing step we decrease the

value of the objective function with 4.

Table 4.8 presents final values of functions 'max()p kτ∆ and FT(k) after running

the MSA.2.0 algorithm.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

137

Table 4.3. Values of functions ()p kτ and ()kR
kτ

for example from Fig. 4.5a

k
p

()kR kτ

1 2 3 4

3 2 13 16 17 19

2 5 9 13 16 18

1 7 12 14 15 20

Table 4.4. Initial values of functions 'max()p kτ∆
and FT(k) (before running algorithm MSA.2)

k
p

FT(k)
1 2 3 4

3 5 0 0 0 1

2 2 4 3 1 2

1 0 1 2 2 0

Table 4.5. Final values of functions 'max()p kτ∆ and FT(k) (after running algorithm MSA.2)

k p

FT(k)
1 2 3 4

3 5 0 0 0 0

2 0 2 1 0 0

1 0 1 2 3 0

Table 4.6. Modified moments ' ()p kτ of achieving checkpoints by all objects (after running algorithm

MSA.2)

k
p

1 2 3 4
3 2 13 16 17+1

2 5+2 9+2 13+2 16+2

1 7 12 14 15

Table 4.7. Results of running algorithm MSA.2.0

k sk ()
ksa k (())

ksZ a k (())
ksL a k

1 0 0 0 0

2 1 1 4 0

3 0 0 0 0

Table 4.8. Final values of functions 'max()p kτ∆ and FT(k) (after running algorithm MSA.2.0)

k

p

FT(k)
1 2 3 4

3 5 0 0 0 1

2 1 3 2 0 1

1 0 1 2 2 0

4. Models and Algorithms for Movement Synchronization

138

4.2.3. Experimental Analysis of the Algorithms

 In Fig. 4.6, Fig. 4.7, Fig. 4.8, Fig. 4.9 the average computational time (on

computer with Intel Pentium IV 3GHz processor) in the logarithmic scale [msec]

for the MSA.2 algorithm, with preprocessing (MSA.2.0 before MSA.2 algorithm)

and without it using different pairs of the ObjOrder-Strategy is presented. The size

of the problem (4.24)-(4.26) has been set as follows: values of K∈{1,…,100} and

values of N∈{1,…,100} (values of K are divided into a group with a range 10, values

of N are grouped into two sets: 1 ≤ N ≤ 50; 51 ≤ N ≤ 100). Over 100 000 randomly

generated input data for the problem (4.24)-(4.26) have been examined. To

compare obtained results from the MSA.2 algorithm, problem (4.24)-(4.26) has been

also solved using the GAMS/CONOPT solver (ObjOrder-Strategy=-1- -1).

Fig. 4.6. Average computational time in the logarithmic scale [msec] for the MSA.2 algorithm, with
Preprocessing=true (using the MSA.2.0 algorithm), ObjOrder∈{0,1}, Strategy∈{0,…,4}, N∈{1,…,50};
ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear optimization problem (4.24)-(4.26)

using the GAMS/CONOPT solver

Fig. 4.7. Average computational time in the logarithmic scale [msec] for the MSA.2 algorithm, with
Preprocessing=true (using the MSA.2.0 algorithm), ObjOrder∈{0,1}, Strategy∈{0,…,4}, N∈{51,…,100};

ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear optimization problem (4.24)-(4.26)
using the GAMS/CONOPT solver

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

139

Fig. 4.8. Average computational time in the logarithmic scale [msec] for the MSA.2 algorithm, with
Preprocessing=false (without using the MSA.2.0 algorithm), ObjOrder∈{0,1}, Strategy∈{0,…,4},

N∈{1,…,50}; ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear optimization problem
(4.24)-(4.26) using the GAMS/CONOPT solver

Fig. 4.9. Average computational time in the logarithmic scale [msec] for the MSA.2 algorithm, with
Preprocessing=false (without using the MSA.2.0 algorithm), ObjOrder∈{0,1}, Strategy∈{0,…,4},

N∈{51,…,100}; ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear optimization problem
(4.24)-(4.26) using the GAMS/CONOPT solver

 It can be observed (comparing Fig. 4.6 and Fig. 4.8 or Fig. 4.7 and Fig. 4.9) that

by using the preprocessing step (running algorithm MSA.2.0 before MSA.2) we can

accelerate computational time between a few to twenty times faster than without

the preprocessing step. It results from the fact that in the MSA.2.0 algorithm we try

to decrease the value of the objective function (4.24) by decreasing 'max

{1,..., }
()p

p N
kτ

∈

∀ ∆

values (for each k-th object), in order to obtain all nonnegative values of 'max()p kτ∆

(like in the MSA.2 algorithm). Then, the MSA.2 algorithm decreases the number of

iterations. For all pairs of the ObjOrder-Strategy we have obtained faster

computational time than when using the GAMS/CONOPT solver. We have

obtained the best computational time for the ObjOrder-Strategy: 0-0, 1-0 (also for 2-0

and 3-0).

4. Models and Algorithms for Movement Synchronization

140

Fig. 4.10. Average percentage improvement of the objective function (4.24) value for the MSA.2
algorithm, with Preprocessing=true (using the MSA.2.0 algorithm before MSA.2), ObjOrder∈{0,1},

Strategy∈{0,…,4}, N∈{1,…,50}; ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear
optimization problem (4.24)-(4.26) using the GAMS/CONOPT solver

Fig. 4.11. Average percentage improvement of the objective function (4.24) value for the MSA.2
algorithm, with Preprocessing=true (using the MSA.2.0 algorithm before MSA.2), ObjOrder∈{0,1},

Strategy∈{0,…,4}, N∈{51,…,100}; ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear
optimization problem (4.24)-(4.26) using the GAMS/CONOPT solver

Fig. 4.12. Average percentage improvement of the objective function (4.24) value for the MSA.2
algorithm, with Preprocessing=false (without using the MSA.2.0 algorithm before MSA.2),

ObjOrder∈{0,1}, Strategy∈{0,…,4}, N∈{1,…,50}; ObjOrder=-1 and Strategy=-1 deal with solving the
nonlinear optimization problem (4.24)-(4.26) using the GAMS/CONOPT solver

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

141

Fig. 4.13. Average percentage improvement of the objective function (4.24) value for the MSA.2
algorithm, with Preprocessing=false (without using the MSA.2.0 algorithm before MSA.2),

ObjOrder∈{0,1}, Strategy∈{0,…,4}, N∈{51,…,100}; ObjOrder=-1 and Strategy=-1 deal with solving the
nonlinear optimization problem (4.24)-(4.26) using the GAMS/CONOPT solver

In Fig. 4.10, Fig. 4.11, Fig. 4.12, Fig. 4.13 the average percentage improvement

of the objective function (4.24) value for the MSA.2 algorithm, with or without

preprocessing (MSA.2.0 algorithm) using different pairs of the ObjOrder-Strategy is

presented (ObjOrder∈{0,1}, because for the ObjOrder∈{2,3} similar results have been

obtained). The percentage improvement value, PI, of the objective function value is

calculated as follows: 0 1

0

100%
OBJ OBJ

PI
OBJ

−

= ⋅ , where OBJ0, OBJ1 – values of the

objective function (4.24) before and after running the MSA.2 algorithm,

respectively. For example,
20 14

100% 30%
20

PI
−

= ⋅ = for data have been considered

in chapter 4.2.2.3. It can be observed that for K>20 almost for all pairs of the

ObjOrder-Strategy in the MSA.2 algorithm percentage improvement of the objective

function value is better than for using the GAMS/CONOPT solver. This difference

grows when the value of K grows.

We have obtained the best results using the preprocessing step (Fig. 4.10 and

Fig. 4.12) and the following pairs of the ObjOrder-Strategy: 0-1, 1-1 (also for 2-1 and

3-1). Percentage improvement of the objective function (4.24) value for the best

pairs of the ObjOrder-Strategy is equal from 65% to 80%.

4.3. Multicriteria Movement Synchronization Scheduling (2CMSS

problem)

In chapter 4.2.1.1 two categories of criteria for movement of K objects have

been defined: C.1 – time category and C.2 – "distance" category. We have taken

into consideration the first type of category and we have proposed algorithms for

solving one of the problems from this category (chapter 4.2.2).

4. Models and Algorithms for Movement Synchronization

142

In this chapter we present one of the formulations of the optimization

problem for multicriteria movement synchronization scheduling of K objects

taking into account criteria C.1.2 from (4.14) and C.2.1 from (4.15).

4.3.1. Definition of the 2CMSS Problem

We consider the following two-criteria optimization problem (taking into

account criteria C.1.2 from (4.14) and C.2.1 from (4.15)): in the given graph G (see

definition in chapter 4.2.1.1) to find such node-disjoint paths Ik (see (4.1)) visiting

specified nodes belonging to IPk (see (4.5)) for each k-th of K objects and to

determine such velocities 1(), ()r r

k

i k i k
v

+
, 0, 1, 1,kr R k K= − = that

1 1

() () mink

K K
R

k
k k

I kτ τ

= =

= →∑ ∑

(4.72)

()
max

1 1

() min
N K

p p
p k

kτ τ

= =

− →∑∑ (4.73)

with constraints: (4.20) and (4.21).

Let us note again that (4.72)=(4.14) and (4.73)=(4.15).

We can formulate this problem as two-criteria optimization problem (nonlinear,

discrete-continuous) of determining the K shortest node-disjoint paths via some

alignment nodes in the restricted area (2CMSS problem) as follows (A, H, jnkx ,

ijout , ijin , inka , ikh , V, M, have been defined in chapter 3.4.2.1, vjk describes the

velocity of the k-th object on the j-th arc of graph G and it is equivalent to 1(), ()r r

k

i k i k
v

+
,

jd is equivalent to dw,w' for the j-th arc represented by a pair of nodes (w,w')):

1 1 1

min
A M K

j

jnk
j n k jk

d
x

v
= = =

→∑∑∑ (4.74)

1
0 0

{1,..., }
1 1 1 1

max () () min
M K A A

b b
bnl bnk

l K
n k b bbl bk

d d
l x k x

v v
τ τ

−

∈

= = = =

    
+ ⋅ − + ⋅ →    

    
∑∑ ∑ ∑

(4.75)

with constraints:

()

1

, 1, , 1, , 1,
A

ij ij jnk ink
j

out in x a i V n M k K
=

− = = = =∑ (4.76)

1 1 1

1, 1,
A M K

ij jnk
j n k

out x i V
= = =

≤ =∑∑∑ (4.77)

1 1 1

1, 1,
A M K

ij jnk
j n k

in x i V
= = =

≤ =∑∑∑ (4.78)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

143

1 1

, 1, , 1,
A M

ij jnk ik
j n

out x h i V k K
= =

≤ = =∑∑ (4.79)

1 1

, 1, , 1,
A M

ij jnk ik
j n

in x h i V k K
= =

≤ = =∑∑ (4.80)

max(), 1, , 1,jk jv v k j A k K≤ = = (4.81)

0, 1, , 1, , 1,jkv j V n M k K> = = = (4.82)

0, 1, , 1, , 1,jnkx j A n M k K≥ = = = (4.83)

Let us note that: (4.76)=(3.79), (4.77)=(3.80), (4.78)=(3.81), (4.79)=(3.82), (4.80)=(3.83),

(4.83)=(3.84).

We can isolate two subproblems from the 2CMSS problem:

• NDSP problem: function (4.74) (equivalent to (4.72)), constraints (4.76)-(4.80)

and (4.83) deal with searching for the K node-disjoint paths visiting specified

nodes (represented by matrix A) and omitting restricted areas (represented by

matrix H);

• MS problem: function (4.75) (equivalent to (4.73)), constraints (4.81) (equivalent

to (4.20)) and (4.82) (equivalent to (4.21)) deal with searching for such values of

velocities on each arc belonging to the path for each object to minimize the total

differences between achieving times in all alignment nodes for all objects.

The NDSP problem is the same as NDRP-Sum (defined in section 3.4.2.1) when we

set in NDRP-Sum: :
j

j

jk

d
d

v
= .

Interpretation of constraints (4.76)-(4.80) and (4.83) have been described in

chapter 3.4.2.1. Constraints (4.81) and (4.82) assure that no stops on each part (arc)

of the path for the k-th object are permitted (velocity must be greater than zero)

and velocity must be no greater than the maximal possible velocity resulting from

technical properties of the k-th object being moved and topographical properties of

the j-th arc.

In the presented optimization problem we have AMK+AK decision variables

and V(MK+K+2)+AK constraints (excluding (4.82),(4.83)). The problem is very hard

to solve (especially for large graphs) even then we can observe that the matrix of

the constraint coefficients (built on the basis of the left sides of the constraints

(4.76)-(4.80)) is totally unimodular and aink, hik (right sides) are integers, hence the

constraint (4.83) can be written as 0jnkx ≥ (instead of xjnk∈{0,1}). One of the main

difficulty is the problem is nonlinear.

4. Models and Algorithms for Movement Synchronization

144

4.3.2. Methods for Solving 2CMSS Problem

There are several methods to solve multicriteria problems such as 2CMSS, in

generality (Ehrgott, 1997): hierarchization of objective functions (lexicographic

solutions), metacriterion functions, compromise solutions, methods with threshold

values, etc. Some of them have been described in chapter 3.3.4.

Since the 2CMSS problem consists of two subproblems: NDSP and MS, we

propose to use the two-stage algorithm to solve the 2CMSS problem: at first we

solved the problem NDSP (criteria function (4.74), constraints (4.76)-(4.80) and

(4.83)) by replacing vjk by max()jv k in (4.74), 1, , 1,j A k K= = . After solving this

problem we obtain node-disjoint shortest paths for all objects; it means that for

each (the j-th) arc belonging to a path for each (the k-th) object we obtain the

shortest time-cost arc value equalling
max()

j

j

d

v k
. Next, we solved the MS problem

(criteria function (4.75), constraints (4.81) and (4.82)), which is based on making

a correction (decreasing) of velocity value max()jk jv v k≤ for each of the j-th part (arc)

of the path, for each k-th object to achieve a "parallel movement effect" measured

by the value of the function (4.75). This approach corresponds to searching for

lexicographic solutions of the 2CMSS problem. Such a two-stage method for

solving presented problems and such a priority order of optimization criteria are

quite intuitive: at first we have to find the vector of shortest paths for K objects to

set optimal paths, under the assumption that we use maximal possible velocities

on each arc belonging to the path for each object, and next we try to decrease

values of velocities to optimize the second criterion (4.75).

For solving the NDSP problem we may use the SGDP algorithm described in

chapter 3.4.3.1 and for solving the MS problem we may use MSA.1 or MSA.2

algorithms described in chapters 4.2.2.1 and 4.2.2.2.

4.3.3. Numerical Example

In this chapter we present some practical example (corresponding with the
problem from Fig. 4.5) of solving the 2CMSS problem for the following parameters

(see Fig. 4.14a): graph ,G GG V A= , V= GV =16, A= GA =120, K=3, N=4, s1=31,

s2 = 13, s3 = 1, t1 = 30, t2 = 24, t3 = 12 , dj=10, j∈{1,...,A}, i1(1) = 27, i2(1) = 22, i3(1) = 23,
i4(1)= 29 , i1(2)= 15, i2(2)= 10, i3(2)= 11, i4(2)= 17 , i1(3)= 2, i2(3)= 4, i3(3)= 5, i4(3)= 6,

max
31,32(1) 4.29v = , max

32,26(1) 4.29v = , max
26,27(1) 4.29v = , max

27 ,21(1) 4.0v = , max
21,22(1) 4.0v = ,

max
23,29(1) 10.0v = , max

29,30(1) 2.0v = , max
13,14(2) 4.0v = , max

14,15(2) 4.0v = , max
15,16(2) 5.0v = ,

max
16,10(2) 5.0v = , max

10,11(2) 2.5v = , max
11,17(2) 3.33v = , max

17 ,18(2) 10.0v = , max
18,24(2) 10.0v = ,

max
1,2 (3) 5.0v = , max

2,3 (3) 1.82v = , max
3,4 (3) 1.82v = , max

4,5 (3) 3.33v = , max
5,6 (3) 10.0v = ,

max
6,12 (3) 5.0v = . For all remaining arcs maximal velocities are equal 1.0.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

145

Taking into account the idea of solving the 2CMSS problem, at first we need

to solve the NDSP problem using the SGDP algorithm and maximal possible

velocities. We obtain K=3 node-disjoint shortest paths visiting alignment nodes

presented in Fig. 4.14b. To show that the problem corresponds with the problem

from Fig. 4.5, let us note that we have obtained the following achieving times of

alignment nodes for the k=2 object (see also Table 4.5) using formula (4.7):

for i1(2)=15:
10 10

5
4.0 4.0

+ = , for i2(2)=10 :
10 10

5 5 4 9
5.0 5.0

+ + = + = ,

for i3(2)=11 :
10

9 13
2.5

+ = , for i4(2)=17 :
10

13 16
3.33

+ ≈ .

All values of times of achieving alignment nodes are presented in Table 4.5.

 (a) (b)

Fig. 4.14. (a) Example of graph with indicated source (s1,...,s3), destination (t1,…,t3) and alignment
nodes (ip(k), p = 1,..,4, k = 1,...,3) for K=3 objects and N=4 checkpoints for each object; (b) K=3

node-disjoint shortest paths obtained from the SGDP algorithm and visiting alignment nodes ip(k)

Next, having paths for the K objects obtained in the previous stage, we can

solve the MS problem using the MSA.2 algorithm. We have obtained modified

velocities on arcs belonging to the paths for K objects: v5,6(3) = 5.0, v13,14(2) = v14,15(2)

=2.86, the remaining velocities have the same values equal maximal velocities.

Modified times of achieving alignment nodes are presented in Table 4.6. For

example, for the object k=2 we have obtained following modified times (using

formula (4.7)):

for i1(2) = 15 :
10 10

7
2.86 2.86

+ ≈ , for i2 (2) = 10 :
10 10

7 7 4 11
5.0 5.0

+ + = + = ,

for i3(2) = 11 :
10

11 15
2.5

+ = , for i4 (2) = 17 :
10

15 18
3.33

+ ≈ .

4. Models and Algorithms for Movement Synchronization

146

4.4. Summary

In this chapter single- and multi-criteria optimization models and algorithms

of movement scheduling for many objects to synchronize their movement (2CMSS

problem) have been considered. The model consists of two parts: (1) node-disjoint

path planning visiting specified nodes for K objects with a given vector of

intermediate nodes for each one (NDSP problem); (2) movement synchronization

in intermediate nodes (MS problem). The approaches presented in this chapter

give possibilities to schedule synchronous movement of many objects and they are

used in some simulation-based operational training support systems (Najgebauer

et al., 2007b) at the planning stage of action (see also chapter 5.3). It can be shown

that they are very fast (in comparison with GAMS/CONOPT (MSA.2) or

GAMS/CPLEX (SGDP) solvers) and it is very important from the point of view of

simulator reaction time on user interaction. During movement simulation

(movement schedule realization) it is important for movement control and the

reaction to deviations from the determined schedule (Tarapata, 2009a). These

problems are essential especially in CGF or SAF systems (Petty, 1995) and they are

considered in chapter 5 and chapter 6. Since some of the algorithms being

discussed are heuristic (SGDP, MSA.2) it seems to be essential to provide necessary

and sufficient conditions for obtaining optimal solutions.

It is possible to consider many problems for synchronous movement based on

the given approaches: we can modify the problem (4.24)-(4.26) in such a way that

in each alignment node neither the delay nor the acceleration of all objects between

themselves cannot be greater than the fixed value ∆T, and the criteria function

describes the total time of achieving the destination nodes by all objects:

,
1 1

() min
K N

N k i
k i

k xτ

= =

 
+ → 

 
∑ ∑

subject to:

, ,
{1,..., }

1 1 1

max () () , 1,...,
p pK

p j i p k i
j K

k i i

j x k x T p Nτ τ

∈

= = =

    
+ − + ≤ ∆ =    

    
∑ ∑ ∑

 ,
1

()
N

k p
p

x FT k
=

≤∑ , k=1,...,K

 , 0k px ≥ , k=1,...,K; p=1,...,N

Presented suggestions may contribute to further works.

5. Automatization and Simulation of Selected Decision

Processes

5.1. Introduction

In this chapter the idea and model of the command and control process

applied for selected elements of decision automata for attack, defence and march

on the battalion level and movement simulation of individual and group objects

are considered. As it has been written in chapter 1, automation of battlefield

processes are very rarely discussed in the literature; however some ideas we can

come across in (Antkiewicz et al., 2011b; Courtemanche & Monday, 1994; Dockery

& Woodcock, 1993; Hoffman H. & Hoffman M., 2000; Najgebauer, 1999a; 2008a;

Najgebauer et al., 2007b; Ross et al., 2004; Sokolowski, 2002; Tarapata, 2008b). The

decision automata being presented replaces battalion commanders in the simulator

for military trainings and it executes two main processes (Antkiewicz et al., 2003;

Najgebauer et al., 2007b): decision planning process and direct combat control. The

decision planning process contains three stages: the identification of a decision

situation, the generation of decision variants, the variants evaluation and the

selection of the best variant, which satisfies the proposed criteria. For this reason,

we can define the identification of the decision situation (the first stage of the

decision planning process and the most interesting from the point of view of the

automatization process) as a multicriteria weighted graph similarity decision

problem (MWGSP) (Tarapata, 2007b) and present it in chapter 5.2.3. The remaining

two stages of decision planning process (the variants evaluation and selecting the

best variant) are described in detail in (Antkiewicz et al., 2003; 2004a; 2004b; 2008d;

2011a; Najgebauer et al., 2007b): for each class of decision situations a set of action

plan templates for subordinate and support forces are generated. In order to

generate and evaluate possible variants the pre-simulation process based on some

procedures: forces attrition procedure, slowing down the rate of attack procedure,

utilization of munitions and petrol procedure is used. In the evaluation process the

following criteria: time and degree of task realization, own losses, utilization of

munitions and petrol are applied. We also present decision automata to a march

which contains: the march planning process (containing: march organization

determination and detailed march schedule determination) and the direct march

control (containing: march simulation, identifying fault situations during a march

simulation and automata reactions, velocity calculations and fuel consumption

calculation).

5. Automatization and Simulation of Selected Decision Processes

148

The chapter is organized as follows. Chapters 5.2 and 5.3 (based on the

papers (Tarapata 2007b; 2007e; 2008b; 2008c; 2010b)) contain description of

automatization methods of the main battlefield processes (attack, defence and

march) in simulation systems such as CGF. In these chapters, a decision automata,

which is a component of the simulation system for military training, is described as

an example. In chapter 5.4 (based on the papers (Tarapata 2000b; 2000f; 2003a;

2005a; 2010b)) we present methods for movement simulation of individual and

group objects based on the MODSIM simulation language. Presented in chapter 5.5

are some conclusions concerning problems and proposition of their solution in

automatization of decision processes in conflict situations.

5.2. Identification of Decision Situations

5.2.1. Description and Definition of the Problem

The typical military decision planning process contains the following steps

(see Fig. 5.1):

• estimation of power of own and opposite forces, terrain, and other factors,

which may influence on a task realization,

• identification of a decision situation,

• determination of decision variants (Course of Actions, CoA),

• variants (CoA) evaluation (verification),

• recommendation of the best variant (CoA) of the above-stated points, which

satisfy the proposed criteria.

The most important step of the decision planning process is an identification

of the decision situation problem: this problem is that we must find the most

similar battlefield situation (from earlier defined or ensuing situations, e.g. in

knowledge base of battlefield situations, see Fig. 1.1) to the current one.

Afterwards, the decision situation being identified is a basis for choosing CoA,

because with each decision situation a few typical CoA frames (templates) are

connected. The decision situation is classified according to the following factors:

own task, expected actions of opposite forces, environmental conditions – terrain,

weather, the time of the day and season of the year, current state of own and

opposite forces in the sense of personnel and weapon systems.

We define space of decision situations as follows:

{ }1,..,8: ()r rDSS SD SD SD
=

= = (5.1)

Vector SD represents the decision situation, which is described by the following

eight elements: SD1 – command level of opposite forces, SD2 – type of task of

opposite forces (e.g. attack, defence), SD3 – command level of own forces,

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

149

SD4 – type of task of own forces (e.g. attack, defence), SD5 – net of squares as

a model of activities (terrain) area
7

8

5
1,..,5
1,..,

i SDij
j SD

SD SD
=

=

 =   , 5 5,
1,..,8()k

ij ij kSD SD
=

= .

Fig. 5.1. Algorithm for selecting the best variant of action (Antkiewicz et al., 2005)

For the terrain square with the indices (i,j) each of the elements denotes: 5,1
ijSD

– the

degree of terrain passability, 5,2
ijSD

– the degree of forest covering, 5,3

ijSD

– the

degree of water covering, 5,4
ijSD

– the degree of terrain undulating, 5,5

ijSD

–

 armoured power (potential) of opposite units, 5,6
ijSD

– infantry power (potential)

of opposite units, 5,7
ijSD

– artillery power (potential) of opposite units, 5,8

ijSD

–

 coordinates of the square, 6SD – the description of own forces: ()
6

6 1,..,4i i
SD SD

=

= ,

6
1SD – total armoured power (potential), 6

2SD – total infantry power (potential),

5. Automatization and Simulation of Selected Decision Processes

150

6
3SD – total artillery power (potential), 6

4SD – total air fire support (antiaircraft)

power (potential); SD7 – the width of activities (interest) in an area (number of

squares), SD8 – the depth of activities (interest) in an area (number of squares).

The set of decision situations patterns is given: { : }PDSS PS PS DSS= ∈ . For

the current decision situation CS, we have to find the most similar situation PS

from the set of patterns. In chapters 5.2.2 and 5.2.3 we present more formal

definitions of "situations similarity".

We have determined the subset of decision situation patterns PDSSCS, which

are generally similar to the current situation CS, considering such elements like:

task type, command level of own and opposite units and own units' potential:

{ }
=

= = ∈ = = ≤ ∆1,..,6() : , 1,.., 4, (,)CS i i i i potwlPDSS PS PS PDSS PS CS i dist CS PS Pot (5.2)

where:

{ }= − =

6 6(,) max , 1, ..4potwl k kdist CS PS CS PS k (5.3)

and Pot∆ – the maximum difference of the potential of own forces (calibration

parameter).

5.2.2. Distance Vector Approach

Here, we present the distance vector approach for solving the problem

defined in chapter 5.2.1. We formulated and solved the multicriteria optimization

problem (5.4), which allow us to determine the most matched pattern situation

(PS) to the current one (CS) from the point of view of terrain and military power

characteristics (Najgebauer et al., 2007b):

(), ,CS CS DZ PDSS F R= (5.4)

where:
2:CS CSF PDSS R→ (5.5)

() ()(,), (,)CS ter potF PS dist CS PS dist CS PS= (5.6)

()

1

4
5, 5,

1 1 1

(,)
p pJI

k k
ter k ij ij

k i j

dist CS PS CS PSλ

= = =

 
= ⋅ −  

 
∑ ∑∑ (5.7)

4

1

1, 0, 1,.., 4k k
k

kλ λ

=

= > =∑ (5.8)

()

1

7
5, 5,

5 1 1

(,)
p pJI

k k
pot k ij ij

k i j

dist CS PS CS PSµ

= = =

 
= ⋅ −  

 
∑ ∑∑ (5.9)

7

5

1, 0, 5, ..,7k k
k

kµ µ

=

= > =∑ (5.10)

7 7min{ , }I CS PS= , 8 8min{ , }J CS PS= (5.11)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

151

(,) :

(,) (,)

(,) (,)

CS CS

D ter ter

pot pot

Y Z PDSS PDSS

R dist CS Y dist CS Z

dist CS Y dist CS Z

 ∈ ×

 
= ≤ ∧ 
 

≤ 

 (5.12)

Parameters kµ and kλ describes the weights for components calculating the

value of functions distter and distpot. The domination relation defined in (5.12)

allows us to choose such a PS from PDSSCS , which has the best value of distter and

distpot , that is the most similar to CS (non-dominated PS from the RD point of

view). The idea of the identification of the decision situation and CoA selection is

presented in Fig. 5.2. Application of this method is presented in chapter 6.2 and in

(Antkiewcz et al., 2011b).

Fig. 5.2. The idea of identification of the decision situation and CoA selection
(Antkiewicz et al., 2011b)

5.2.3. Multicriteria Weighted Graphs Similarity (MWGSP) Approach

In this chapter concept of multicriteria weighted graphs similarity and its

application for pattern matching of decision situations is considered. The approach

extends known pattern recognition approaches based on graph similarity with two

features: (1) the similarity is calculated as structural and non-structural

(quantitative) in a weighted graph, (2) choice of the most similar graph to graph

representing pattern is based on a multicriteria decision. Application of the

presented approach for pattern recognition of decision situations has been

described in (Tarapata, 2007b; 2008b) and in chapter 5.2.3.5.

5. Automatization and Simulation of Selected Decision Processes

152

5.2.3.1. Structural objects similarity – a short overview

Object similarity is an important issue in applications such as pattern

recognition. With given a database of known objects and a pattern, the task is to

retrieve one or several objects from the database that are similar to the pattern.

If graphs are used for object representation this problem turns into

determining the similarity of graphs, which is generally referred to as graph

matching. Standard concepts in graph matching include (Farin et al., 2003;

Kriegel & Schonauer, 2003): graph isomorphism, subgraph isomorphism, graph

homomorphism, maximum common subgraph, error-tolerant graph matching

using graph edit distance (Bunke, 1997), graph’s vertices similarity, histograms of

the degree sequence of graphs. A large number of applications of graph matching

have been described in the literature (Bunke, 2000; Kriegel & Schonauer, 2003;

Robinson, 2004). One of the earliest applications was in the field of chemical

structure analysis. More recently, graph matching has been applied to case-based

reasoning, machine learning planning, machine vision, semantic networks, social

networks, conceptual graph, monitoring of computer networks, synonym

extraction and web searching (Bunke, 2000; Blondel et al., 2004; Champin & Solnon,

2003; Kleinberg, 1999; Kriegel & Schonauer, 2003; Melnik et al., 2002; Robinson,

2004; Senellart & Blondel, 2003; Tarapata & Kasprzyk, 2009c; 2010e; Tarapata et al.,

2010d). They include recognition of graphical symbols, character recognition,

shape analysis, terrorist network analysis, three-dimensional object recognition,

image and video indexing and others. It seems that structural similarity is not

sufficient for similarity description between various objects. The arc in the graph

gives only binary information concerning connection between two nodes. And

what about, for example, the connection strength, connection probability or other

characteristics? Thus, the weighted graph matching problem is defined, but in the

literature it is relatively rarely considered (Almohamad & Duffuaa, 1993;

Champin & Solnon, 2003; Tarapata, 2007b; Umeyama, 1988) and it is most often

regarded as a special case of graph edit distance, which is a very time-complex

measure (Bunke, 2004; Kriegel & Schonauer, 2003). Therefore, we define

a multicriteria weighted graph similarity decision problem (MWGSP) and we show

how to use it for pattern recognition (matching) of decision situations (PRDS) in

the decision automata, which replaces commanders in simulators for military

trainings (Najgebauer et al., 2007b).

5.2.3.2. Definitions of structural and quantitative similarity measures between

weighted graphs

Let us define weighted graph WG as follows:

{1,..., } {1,..., }, { ()} , { ()}
G G

i i LF j j LH
n N a A

WG G f n h a
∈ ∈

∈ ∈

= (5.13)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

153

where: G – Berge’s graph, ,G GG N A= , NG, AG – sets of graph’s nodes and arcs,

{ }, ' : , 'G GA n n n n N⊂ ∈ , : n
i Gf N R→ – the i-th function described on the graph’s

nodes, 1,...i LF= , (LF – number of node’s functions); : n
j Gh A R→ – the j-th function

described on the graph’s arcs, 1,...j LH= (LH – number of arc functions).

Let two weighted graphs GA and GB be given. We propose to calculate two

types of similarities of the GA and GB: structural and non-structural (quantitative).

To calculate structural similarity between GA and GB it is proposed to use the

approach defined in (Blondel et al., 2004). Let A and B be the transition matrices of

GA and GB. We calculate the following sequence of matrices:

1 , 0
T T

k k
k T T

k k F

BZ A A Z B
Z k

BZ A A Z B
+

+

= ≥

+

 (5.14)

where Z0=1 (matrix with all elements equal 1); xT – matrix x transposition;
F

x –

Frobenius (Euclidian) norm for matrix x, 2

1 1

B An n

ijF
i j

x x
= =

= ∑∑ , nB – number of matrix

rows (number of nodes of GB), nA – number of matrix columns (number of nodes of

GA). Element zij of the matrix Z describes the similarity score between the i-th node

of GB and the j-th node of GA. The essence of the similarity of the graph nodes is the

fact that two graph nodes are similar, if their neighbouring nodes are similar. The

greater value of zij the greater the similarity between the i-th node of GB and the

j-th node of GA. We obtain structural similarity matrix S(GA,GB) between nodes of

graphs GA and GB as follows:

 2(,) [] lim
B AA B ij n n k

k
S G G s Z

×

→+∞

= = (5.15)

Some computation aspects of calculation S(GA,GB) have been presented in

(Blondel et al., 2004). We can write (5.14) more explicitly by using the

matrix-to-vector operator that develops a matrix into a vector by taking its

columns one by one. Therefore, we can write the equality (5.14) as follows:

1

()

()

T T
k

k T T
k F

A B A B z
z

A B A B z
+

⊗ + ⊗

=

⊗ + ⊗

 (5.16)

where "⊗" denotes the Kronecker product (also denoted tensorial, direct or

categorial product). Unfortunately, iteration zk+1 does not always converge.

Authors of the work (Melnik et al., 2002) showed that if we change the formula

(5.16) for 1

()

()

T T
k

k T T
k F

A B A B z b
z

A B A B z b
+

⊗ + ⊗ +

=

⊗ + ⊗ +

, then formula (5.16) converges for b>0.

Having matrix S(GA,GB), we can formulate and solve an optimal assignment

5. Automatization and Simulation of Selected Decision Processes

154

problem (using e.g. the Hungarian algorithm) to find the best allocation matrix

[]
B Aij n nX x

×

= of nodes from graph describing GA, GB:

1 1

(,) max
B An n

S A B ij ij
i j

d G G s x
= =

= ⋅ →∑∑ (5.17)

with constraints:

1

1, 1,
Bn

ij A
i

x j n
=

≤ =∑ (5.18)

1

1, 1,
An

ij B
j

x i n
=

≤ =∑ (5.19)

{1,..., } {1,..., }
{0,1}

B A
ij

i n j n
x

∈ ∈

∀ ∀ ∈ (5.20)

The dS(GA,GB) describes the value of structural similarity measure of GA and GB

(Fig. 5.3). Let us note that we can easily adopt centrality measures from social

networks to use them or their combinations instead sij (Bartosiak et al., 2011).

To calculate non-structural (quantitative) similarity between GA and GB we

should consider the similarity between values of node and arc functions (nodes and

arcs quantitative similarity), (Tarapata, 2007b). To compute quantitative similarity of

nodes we propose to create a vector 1(,) , ...,A B LFG G V V=v of matrices, where

()
B A

k ij n n
V v k

×

 =   , k=1,…,LF, describing similarity matrix between nodes of GA and

GB from the point of view of the k-th node’s function (:
A

A n
k Gf N R→ for GA and

:
B

B n
k Gf N R→ for GB) and () () ()B A

ij k kv k f i f j= − describes the "distance" between

the i-th node of GB and the j-th node of GA from the point of view of B
kf and A

kf ,

respectively. We can apply a norm with parameter 1p ≥ as distance measure:

1

, ,
1

() () () () () ()

ppn
B A B A B A

k k k k k r k rp
r

f i f j f i f j f i f j
=

 
− = − = −  

 
∑ (5.21)

where , ()A
k rf ⋅ , , ()B

k rf ⋅ describe the r-th component of the vector being the value of A
kf

and B
kf , respectively.

Next, we compute for each k=1,…,LF normalized matrix * * ()
B A

k ij n n
V v k

×

 =   , where

* () ()ij ij k F
v k v k V= . This procedure guarantees that each * () [0,1]ijv k ∈ . Finally, we

compute the total quantitative similarity between the i-th node of GB and the j-th

node of GA as follows:

*

1,...,
1 1

(), 1, [0,1]
LF LF

ij k ij k k
k LF

k k

v v kλ λ λ

=

= =

= ⋅ = ∀ ∈∑ ∑ (5.22)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

155

Fig. 5.3. Examples of weighted graphs with a single function described on the nodes (set of
functions described on the arcs is empty) and their structural (S(GA,G)) and quantitative (*

1 (,)
A

V G G)

similarity matrices. Dark filled cells describe ones, which create optimal assignment of the nodes of

GA to nodes of G∈{GB, GC, GD, GE}

The dQN(GA,GB) nodes quantitative similarity measure of GA and GB we compute

by solving the assignment problem (5.17)-(5.19) substituting ijv− for sij (because of

that the smaller value of ijv the better) and dQN(GA,GB) for dS(GA,GB) in (5.17).

An example of calculations similarity matrices between nodes of graphs and

similarity measures dS and dQN between graphs are presented in Fig. 5.3 and in

Table 5.1. Let us note that the best structural matched graph for GA is GB

(dS(GA,GB)=1.423 is the maximal value among values of this measure for other

graphs) but the best quantitative matched graph for GA is GC (dQN(GA,GC)=0 is

a minimal value among of values of this measure for other graphs). The question

is: which graph is the most similar to GA : GB or GC? A method for solving the

problem and to answer the question is presented in chapter 5.2.3.4: we have to

apply a multicriteria choice of the best matched graph to GA.

We can obtain arcs quantitative similarity measure dQA(GA,GB) by analogy to

dQN(GA,GB): we build a vector 1(,) ,...,A B LHG G E E=e of matrices, where

[()]
B Ak ij m mE e k

×

= , k=1,…,LH (mA, mB – number of arcs in GA and GB) describing the

similarity matrix between arcs of GA and GB from the point of view of the k-th arc

function (:
A

A n
k Gh A R→ for GA and :

B

B n
k Gh A R→ for GB), () () ()B A

ij k k p
e k h i h j= − ,

next * () ()ij ij k F
e k e k E= and *

1

(),
LH

ij k ij
k

e e kµ

=

= ⋅∑
1

1,
LH

k
k

µ

=

=∑
1,...,

0k
k LH

µ

=

∀ ≥ . Substituting in

5. Automatization and Simulation of Selected Decision Processes

156

(5.17) ije− for sij, dQA(GA,GB) for dS(GA,GB) and solving (5.17)-(5.19) we obtain

dQA(GA,GB).

Table 5.1. Values of similarity measures between GA and each of the four graphs from Fig. 5.3

Graph G dS(GA,G) dQN(GA,G) 0.5dS(GA,G) - 0.5dQN(GA,G)

GB 1.423 0.5 0.462

GC 1.412 0 0.706

GD 1.412 0.25 0.456

GE 1.225 0.5 0.362

Let us note that it is possible to determine a single quantitative similarity

measure for GA and GB. To this end, we use transformation of graph ,G N A=

into a temporary graph * * *,G N A= as follows: *N N A= ∪ , * * *A N N⊂ × and

 () ()
* *

,
(,) (,) (,) (,)

v N a A x N x N
v x a v a A x v a a v A

∈ ∈ ∈ ∈

∀ ∃ = ⇒ ∈ ∨ ∃ = ⇒ ∈ (5.23)

If G was a weighted graph then in G* we attribute the arc and node functions

from G to appropriate nodes of G* (that is to nodes and arcs from G). Using this

procedure for GA and GB we obtain *
AG and *

BG . Next, for *
AG and *

BG we can

calculate a quantitative similarity measure * *(,)QN A Bd G G

of nodes. Example of

constructing G* from G is presented in Fig. 5.4.

Fig. 5.4. Transformation of G (left-hand side) into G
*
 (right-hand side)

5.2.3.3. Epsilon-similarity of weighted graphs

At this moment, we propose another view on the quantitative similarity

between weighted graphs (Tarapata, 2007b).

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

157

Definition 5.1

Let us two weighted graphs:

, , { ()} ,
A

A
A A A A n VWG G V E f n

∈

= = ∅ and , , { ()} ,
B

B
B B B B n VWG G V E f n

∈

= = ∅

be given and :A
Af V R→ , :B

Bf V R→ .

We say that node Ax V∈ is (f,ε)-similar to node By V∈ , 0ε ≥ , if

() [(1) (); (1) ()]A B Bf x f y f yε ε∈ − ⋅ + ⋅ or () [(1) (); (1) ()]B A Af y f x f xε ε∈ − ⋅ + ⋅ .

We can use the definition of (f,ε)-similarity of nodes to construct

(f,ε)-similarity measure between graphs GA and GB. To this end we define the

binary similarity matrix between nodes of GA and GB as follows: () [()]
B A

b b
ij n nV vε ε

×

=

and () 1b
ijv ε = if () [(1) (); (1) ()]A B Bf j f i f iε ε∈ − ⋅ + ⋅ or

() [(1) (); (1) ()]B A Af i f j f jε ε∈ − ⋅ + ⋅ , ,Bi V∈ Aj V∈ and () 0b
ijv ε = otherwise.

Next we compute *() () ()b b b
ij ij F

v v Vε ε ε= , and compute (,)QN A Bd G Gε solving the

assignment problem (5.17)-(5.19) by substituting *()b
ijv ε for sij and (,)QN A Bd G Gε for

dS(GA,GB) in (5.17). This idea may be easily extended on a set of node functions.

The idea of the (f,ε)-similarity is presented in Fig. 5.5. Weighted graphs GA

and GB with a single function described on the nodes are defined in Fig. 5.3. We

obtain, for example:

 1,3(1) 1bv ε = =

because (3) 1 [(1 1) (1); (1 1) (1)]A B Bf f f= ∈ − ⋅ + ⋅ that is

(3) 1 [0; 2 2]Af = ∈ ⋅ ;

 3,4(0.34) 1bv ε = =

because (3) 2 [(1 0.34) (4) 3; (1 0.34) (4) 3]B A Af f f= ∈ − ⋅ = + ⋅ =

that is = ∈ ⋅ ⋅(3) 2 [0.66 3; 1.34 3]Bf .

Fig. 5.5. The idea of the (f,ε)-similarity between nodes of GA and GB. Binary matrices Vb(ε) for two

values of ε are presented. Filled cells describe node-to-node assignment of GA to GB, which create an
optimal assignment

5. Automatization and Simulation of Selected Decision Processes

158

5.2.3.4. Formulation of the multicriteria weighted graphs similarity problem

(MWGSP)

Let us accept 1 2{ , , ..., }MSG G G G= as a set of weighted graphs defining certain

objects. Moreover, we have a weighted graph P that defines a certain pattern

object. The problem is to find such a graph Go from SG that is the most similar to P.

We define this problem as a multicriteria weighted graphs similarity problem

(MWGSP), which is a multicriteria optimization problem in the space SG with

relation RD:

(), , DMWGSP SG F R= (5.24)

where:

3:F SG R→ , () ()(,), (,), (,)S QN QAF G d P G d P G d P G= (5.25)

(,) : (,) (,)

 (,) (,)

 (,) (,)

S S

D QN QN

QA QA

Y Z SG SG d P Y d P Z

R d P Y d P Z

d P Y d P Z

 ∈ × ≥ ∧

 
= ≤ ∧ 
 

≤ 

 (5.26)

Domination relation RD (Pareto relation between elements of SG) gives

possibilities to compare graphs from SG. Weighted graph Z is more similar to P

than Y if structural similarity between P and Y is not smaller than between P and Z

and, simultaneously, both quantitative similarities between P and Y are not greater

than between P and Z. There are many methods for solving the problem (5.24)

(Eschenauer et al., 1990): weighted sum (scalarization of set of objectives),

hierarchical optimization (the idea is to formulate a sequence of scalar optimization

problems with respect to the individual objective functions subject to bounds on

previously computed optimal values), trade-off method (one objective is selected

by the user and the other ones are considered as constraints with respect to the

individual minima), method of distance functions in Lp-norm (1p ≥) and others.

We propose to use the scalar function () :H G SG R→ as a weighted sum of

objectives:

() () ()1 2 3

1 2 3 1 2 3

(,) (,) (,)

, , 0, 1

S QN QAH G d P G d P G d P Gα α α

α α α α α α

= ⋅ + ⋅ − + ⋅ −

≥ + + =

 (5.27)

Taking into account (5.27) the problem of finding the most matched Go to

pattern P can be formulated as follows: to determine such a oG SG∈ , that

() max ()o

G SG

H G H G
∈

= . In the last column of Table 5.1 the scalar function H(G) is

defined as follows:

1 2 3() (,) ((,)) ((,))S QN QAH G d P G d P G d P Gα α α= ⋅ + ⋅ − + ⋅ − (5.28)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

159

where 1 2 0.5α α= = , 3 0, AP Gα = = , { , , , }B C D ESG G G G G= . Let us note that the

best matched graph to GA being the solution of MWGSP with the scalar function

H(G) is GC (H(Go=GC)=0.706).

Let us estimate computational complexity of the weighted graphs similarity.

Let n=max{nA,nB}, m=max{mA,mB}. To compute structural similarity measure (5.17)

we must first calculate matrix (5.15) and next solve the problem (5.17)-(5.20).

Computation of matrix (5.15) takes a time O(n2.376) because in practice k<<n (using

matrix multiplications algorithm given by Coppersmith and Winograd with an

asymptotic complexity of O(n2.376), (Cormen, 1994)). Solving the problem

(5.17)-(5.20) takes a time O(n3) using implementation of Hungarian algorithm given

by Edmonds and Karp, so we obtain total complexity of these two steps O(n3). To

compute nodes quantitative similarity measure dQN we must first compute matrix

ij
n n

V v
×

 =   in time 2()O LF n⋅ and then solve the modified problem

(5.17)-(5.20) in time O(n3), so we obtain total complexity of these two steps
2 3()O LF n n⋅ + . For calculate arcs quantitative similarity measure dQA we obtain

complexity by analogy like for dQN and we have 2 3()O LH m m⋅ + . Finally,

computational complexity of total graph measure (5.27) is equal
2 3 2 3()O LF n n LH m m⋅ + + ⋅ + .

5.2.3.5. Application of weighted graphs similarity to pattern recognition of

decision situations

In the presented proposition the weighted graphs similarity approach to the

identification of the decision situation is used. It consists of three stages:

1. Building weighted graphs WGT(CS), WGD(CS) and WGT(PS), WGD(PS)

representing decision situations: current (CS) and pattern (PS) for

topographical conditions (WGT) and units (potential) deploying (WGD);

2. Calculation of similarity measures between pairs: WGT(CS), WGT(PS) and

WGD(CS), WGD(PS) for each CSPS PDSS∈ ;

3. Selecting the most similar PS to CS using calculated similarity measures.

Stage 1

The first stage is to build weighted graphs WGT and WGD as follows:

{1,...,5}, , { ()}
GT

T
GT GT k k

n N

WGT GT N A f n
∈

∈

= = , {1,...,4}, , { ()}
GD

D
GD GD k k

n N

WGD GD N A f n
∈

∈

= =

where G (GT or GD) – Berge’s graphs, ,G GG N A= , NG, AG – sets of graph nodes

and arcs, { }, ' : , 'G GA n n n n N⊂ ∈ . Weighted graphs WGT and WGD describe

decision situations (current CS and pattern PS). Each node n of GT and GD

5. Automatization and Simulation of Selected Decision Processes

160

describes terrain cells (i,j)=n with non-zero values of characteristics defined as

components of 5
ijSD from (5.1) and 5,

{1,...,4}
() ,T k

k ij
k

f n SD
∈

∀ = 5,8
5 ()T

ijf n SD= ,

5,4

{1,...,3}
()D k

k ij
k

f n SD +

∈

∀ = , 5,8
4 ()D

ijf n SD= . Two nodes , GDx y N∈ (for , GTx y N∈ by

analogy) are linked by an arc, when cells represented by x and y are adjacent (more

precisely: they are adjacent cells that take into account the direction of action, see

Fig. 5.6). For example, the terrain can be divided into 15 cells (3 rows and 5

columns, left-hand side, see Fig. 5.6). The units are located in cells (denoted by

circles and Xs). Structural representation of deployment of units is defined by the

graph GD. Let us note that similar representation can be used for topographical

conditions (single graph for one of the topographical information layer: waters,

forests, passability or single graph GT for all of this information, see Fig. 5.6,

right-hand side).

Stage 2

Having weighted graphs WGD(CS) and WGD(PS) (WGT(CS) and WGT(PS))

representing the current CS and the pattern PS decision situations (for units

deploying) we use the procedure described in chapter 5.2.3.2 to calculate the

structural and quantitative similarity measures for both graphs.

We obtain for WGD:

dS(WGD(CS), WGD(PS))= (,)D
Sd CS PS , dQN(WGD(CS), WGD(PS))= (,)D

QNd CS PS

and for WGT:

dS(WGT(CS),WGT(PS))= (,)T
Sd CS PS , dQN(WGT(CS),WGT(PS))= (,)T

QNd CS PS .

Fig. 5.6. Deployment of units and their structural (graph GD) representation (left-hand side) and
terrain covering (growth) and its structural (GT) representation (right-hand side). Circles (O) and

crosses (X) describe two types of units

Stage 3

We formulate problem (5.24), separately for WGT and WGD, where:

SG:=PDSS, F(G):=FD(PS), (,)Sd P G := (,)D
Sd CS PS , (,)QNd P G := (,)D

QNd CS PS for WGD

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

161

and F(G):=FT(PS), (,)Sd P G := (,)T
Sd CS PS , (,)QNd P G := (,)T

QNd CS PS for WGT. Next, we

define the scalar functions (5.27) to solve the problem (5.24) for WGD and WGT:

1 2() (,) ((,))D D
D S QNH d dα α⋅ = ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅ (5.29)

and

1 2() (,) ((,))T T
T S QNH d dγ γ⋅ = ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅ (5.30)

Having HD(PS) and HT(PS) we can combine these criteria (as in (5.27)) or set

threshold values and select the most matched pattern situation to the current one.

This process requires "rich" knowledge base of pattern situations in order to better

learn of the MWGSP algorithm.

 Concept of MWGSP can be also used to estimate real realization of course of

action (Antkiewicz et al., 2009d):

• we define formation of conflict side using network representation from (5.13);

• taking into account (5.13) we define pattern formation PF of conflict side; the PF

is predicted (or demanded) formation which should be achieved after actions;

• after simulation of course of actions si (i=1,..., N) we obtain ASF(si) formation for

each i=1,..., N;

• we calculate structural (, ())S id PF ASF s and quantitative (, ())QN id PF ASF s

similarity measures between PF and ASF(si) using procedure described in

chapter 5.2.3.2;

• we can solve MWGSP defined in chapter 5.2.3.4 to find the best *
is course of

action from the point of view of its formation similarity to demanded PF

formation.

5.2.3.6. Numerical example

An example of using the approach presented in chapter 5.2.3.5 to find the

most matched pattern decision situation to the current one is presented in Fig. 5.7

and in Table 5.2. Results of calculations HD(PS) are presented for each

1 8{ , ..., }CSPS PDSS PS PS∈ = . Only function () 5,8
4 ()D CS

ijf n SD= (()
4 ()D PSf n for pattern PS)

is used from WGD to compute quantitative similarity of nodes (see chapter 5.2.3.2)

because all units have the same type. Thus, vector v(WGD(CS),WGD(PS)) of

matrices has one component
() ()1 | || |[(1)]

GD PS GD CSij N NV v
×

= . Function ()
4 ()D CSf n describes

coordinates of node n (the left-lower cell has coordinates (1,1)). The norm from

(5.21) has the form of:

1 222

4 4 4, 4,2
1

() () () ()D D D D
r rp

r

f i f j f i f j
=

=

 
− = −  

 
∑ and it describes the

geometric distance between nodes i∈NGD(PS) and j∈NGD(CS). Let us note that for

weights 1 20, 1α α= = values in Table 5.2 (for the row PSi) describes (,)D
QN id CS PS

5. Automatization and Simulation of Selected Decision Processes

162

and for 1 21, 0α α= = describes (,)D
S id CS PS . The best matched PS to CS is PS2

(taking into account D
Sd and D

QNd).

The process of optimal selection of weights can be organized as follows: we

build a learning set {CSi,PDSSi}i=1,…,LS and for different values of weights experts

estimate whether, in their subjective opinion, CSi is similar to PS*
∈PDSSi

determined from the procedure. The combination of weight values, which are

indicated by majority of experts, is the optimal combination.

Some other applications of the MWGSP problem are presented in chapter 6.3.

Fig. 5.7. The current situation CS with graph GD(CS) and eight pattern situations PSi (i=1,…,8) with
graphs GD(PSi) describing structure of units deployment. Patterns 1-5, 2-6, 3-7 and 4-8 have the

same structure, but cells for patterns 5,..,8 have a greater size than for patterns 1,…,4

Table 5.2. Values of the scalar function HD(PSi) combining structural (weight α1) and quantitative

(weight α2) similarity measures between GD(CS) and GD(PSi) from Fig. 5.7. The best (maximal)
values in the columns are denoted in bold

Pattern Weights (α1 ; α2)

PSi (0; 1) (0.33; 0.67) (0.5; 0.5) (0.67; 0.33) (1; 0)

PS1 -0.094 0.283 0.463 0.800 1.527

PS2 -0.370 0.283 0.593 0.870 1.504

PS3 -0.478 0.157 0.360 0.726 1.254

PS4 -0.233 0.176 0.467 0.827 1.527

PS5 -0.474 0.120 0.461 0.824 1.527

PS6 -0.706 0.032 0.378 0.761 1.504

PS7 -0.63 0.070 0.279 0.631 1.254

PS8 -0.508 0.047 0.415 0.793 1.527

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

163

5.3. Decision Automata for a March

In chapter 5.2 elements of decision automata for an attack, which replaces the

commander at the battalion level, have been described. In this chapter we present

the decision automata for marching which execute two main processes (Tarapata,

2007e): the march planning process and direct march control. The march planning

process relating to the automata includes the determination of: march

organization, paths for units and detailed march schedule for each unit in the

column. The direct march control process contains such phases like command,

reporting and reaction to fault situations during the march simulation. The

automata is implemented in the ADA language and it represents a commander of

battalion level (the lowest level of trainees is brigade level). It is a component of

distributed interactive simulation system SBOTSS Zlocien for CAXes (Computer

Assisted Exercises) (Najgebauer, 2004a; 2004b). Some of the applications are

presented in chapter 6.1.

5.3.1. The March Planning Process

5.3.1.1. Description of the problem

The march planning process relating to the automata contains the

determination of such elements as: march organization (units order in the march

column, count and stopping points), paths for units and detailed march schedule

for each unit in the column. Algorithms, which carry out the decision planning

process described below, are presented in chapter 5.3.3.

The decision process for the march starts at the moment t, when the battalion

id receives the march order SO(id, t) from a superior (brigade) unit. The structure

of the SO(id, t) is as follows:

()0(,) (,), (,), (,)SSO id t t id t t id t MD id t= (5.31)

where: SO(id, t) – superior order to march for battalion id; 0(,)t id t – readiness time

for the unit id; (,)St id t – starting time of the march for the unit id; (,)MD id t –

detailed description of the march order. Definition of the ()MD id (we omit t) is as

follows:

()
1,

() (), (), (), () (), ()p p p NIP
MD id S id D id RP id IP id in id it id

=

= = (5.32)

where: (), ()S id D id – source and destination areas for id, respectively; RP(id) – the

rest area for the id unit (after twenty-four-hours of marching), optional; IP(id) –

vector of checkpoints for the id unit (march route must cross these points), inp(id) –

the p-th checkpoint, 1 2()pin id W W∈ ∪ , W1, W2 defined in chapter 2.3, in1(id)=PS(id)

5. Automatization and Simulation of Selected Decision Processes

164

is the starting point of the march (at this point the head of the marching column is

formed) and it is required, other checkpoints are optional, itp(id) – time of

achieving the p-th checkpoint (optional); NIP – number of checkpoints. After the id

unit (battalion) receives the brigade commander’s order to march, the decision

automata starts planning the realization of this task. Taking into account (,)SO id t ,

for each unit id’ (of company level and equivalent) directly subordinate to id the

march order, MDS(id’) is determined as follows:

()(') ('), ('), ('), ('), ('), ', ('), (')MDS id S id D id PS id PD id RP id id S id D idµ= (5.33)

where: ('), (')S id D id – source and destination areas for id’, respectively,

(') ()S id S id⊂ , (') ()D id D id⊂ ; RP(id’) – rest area for the id’ unit (after twenty-four-

hours of marching), (') ()RP id RP id⊂ , optional parameter; PS(id’) – starting point

for the id’ unit, the same for all id’∈id and 1 1 2(') ()PS id in id W W= ∈ ∪ ; PD(id’) –

ending point of the march for the id’ unit, the same for all id’∈id and

1 2(')PD id W W∈ ∪ ; (', ,)id S Dµ – the route for the unit id’ from the region S(id’)=S to

region D(id’)=D, ()
1, ((', ,))

(', ,) (',), (',)
m LW id S D

id S D w id m v id m
µ

µ

=

= , (',)w id m – the m-th

node on the path for id’, 1 2(',)w id m W W∈ ∪ , S,D⊂W1∪W2 and (',1)w id S∈ ,

()()', (', ,)w id LW id S D Dµ ∈ ; LW(µ(id’,S,D)) – number of nodes (squares or

crossroads) on the path µ(id’,S,D) for id’ unit; (',)v id m – velocity of the id’ unit on

the arc starting in the m-th node.

5.3.1.2. Models of movement plans

The movement models define following movement plans:

(a) from point (region) to point (region);

(b) visiting selected points (regions);

(c) omitting selected points (regions, obstacles);

(d) inside or outside selected region;

(e) off-roads only;

(f) on-roads only;

(g) combined on- and off-roads.

They use following criterions for paths planning: time minimization, distance

minimization, camouflage degree maximization. We define general problem for

finding the best route which includes problems (a)-(g). We formulate problem for

extreme path finding for id unit which realize movement plans (a)-(g) as follows:

in the network { }1 2 2 1 2 3, () (), () , ,z zS G t t t l l lζ= Ψ ∪ Ψ ∪ (defined in chapter

2.3) to find a such path ()

*(, ,) , ,id S D M id S Dµ ∈ , for which

 () ()

*

(, ,) (, ,)
(, ,) (, ,)

id S D M id S D
K id S D extr K id S D

µ

µ µ

∈

= (5.34)

Z. Tarapata − Models and Algorithms for Knowledge

where: ()(, ,)K id S Dµ – "cost" of the path

((, ,) (,), (, 1)K id S D l w id m w id mµ

(), ,M id S D – set of acceptable paths from the region

()()(,), (, 1)l w id m w id m +

It is important to note that path

from Z1(t) and Z2(t) defined in chapter 2.3

road on the squares (if it is possible) and vice versa)

Fig. 5.8. The idea of hybrid path in

If we want:

• to minimize movement time, then in

extr=min, where l1 function defined

• to minimize geometrical length (distance) of the path then in

()() ()()2, ,l l=i i i i and

• to maximize degree of camouflage for determined path then in

()() ()()3, ,l l=i i i i and in

Moreover, depending on kind of the movement plan (a)

(), ,M id S D of acceptable paths in the different way:

• for the case (a):

() {, , (, ,) (,), (,) : ,M id S D id S D w id m v id m S W D Wµ= = ⊂ ⊂

− Models and Algorithms for Knowledge-Based Decision Support and Simulation..

"cost" of the path µ(id,S,D),

) ()()

((, ,)) 1

1

(, ,) (,), (, 1)
LW id S D

m

K id S D l w id m w id m
µ −

=

= +∑

set of acceptable paths from the region S to the region

(,), (, 1) – arc ()(,), (, 1)w id m w id m + cost function

It is important to note that path (, ,)id S Dµ may consist of sequences of nodes

defined in chapter 2.3 (when we accept descending from the

road on the squares (if it is possible) and vice versa), see Fig. 5.8.

idea of hybrid path in the Zlocien system. The path consist of 5 (2+3) squares and 5
parts of road

ement time, then in (5.35) ()() ((1, ,l l=i i i i

function defined by (2.15);

to minimize geometrical length (distance) of the path then in

and in (5.34) extr=min, where l2 function defined

to maximize degree of camouflage for determined path then in

and in (5.34) extr=max, where l3 function defined

Moreover, depending on kind of the movement plan (a)-(g), we define the set

of acceptable paths in the different way:

(), , (, ,) (,), (,) : ,z zM id S D id S D w id m v id m S W D Wµ= = ⊂ ⊂

and Simulation... 165

 (5.35)

to the region D for id unit,

cost function.

may consist of sequences of nodes

(when we accept descending from the

system. The path consist of 5 (2+3) squares and 5

)), ,i i i i , and in (5.34)

to minimize geometrical length (distance) of the path then in (5.35)

function defined by (2.20);

to maximize degree of camouflage for determined path then in (5.35)

function defined by (2.21).

(g), we define the set

}, , (, ,) (,), (,) : ,z zM id S D id S D w id m v id m S W D W= = ⊂ ⊂ (5.36)

5. Automatization and Simulation of Selected Decision Processes

166

 but if we determine path from the point (node) to the point (node) then 1S =

 and 1D = . It is important to emphasize, that for each {1, ..., () 1}m LW µ∈ − ,

 ()()(,) , (,), (, 1)slowdv id m v id w id m w id m= + , where vslowd(•,•) described by (2.17).

• for the case (b):

() (){ }() {1,..., ()}
, , (, ,) (,), : (,)

a P id m LW
M id S D id S D w id m w id m a

µ

µ

∈ ∈

= = ∀ ∃ =i (5.37)

 where P(id)⊂Wz describes subset of Wz which must belong to the path µ;

• for the case (c):

() (){ }() {1,..., ()}
, , (, ,) (,), : ~ (,)

a NP id m LW
M id S D id S D w id m w id m a

µ

µ

∈ ∈

= = ∀ ∃ =i (5.38)

where NP(id)⊂Wz describes subset of Wz which path µ must omit;

• for the case (d1):

() (){ }{1,..., ()}
, , (, ,) (,), : (,) ()

m LW
M id S D id S D w id m w id m OW id

µ

µ

∈

= = ∀ ∈i (5.39)

where OW(id)⊂Wz describes connected subset of Wz inside which the path µ

must cross;

• for the case (d2):

() (){ }{1,..., ()}
, , (, ,) (,), : (,) ()

m LW
M id S D id S D w id m w id m OZ id

µ

µ

∈

= = ∀ ∉i (5.40)

where OZ(id)⊂Wz describes subset of Wz outside which the path µ must cross;

• for the case (e):

 () (){ }2
{1,..., ()}

, , (, ,) (,), : (,)
m LW

M id S D id S D w id m w id m W
µ

µ

∈

= = ∀ ∈i (5.41)

• for the case (f):

 () (){ }1
{1,..., ()}

, , (, ,) (,), : (,)
m LW

M id S D id S D w id m w id m W
µ

µ

∈

= = ∀ ∈i (5.42)

• for the case (g): the same like for the case (a).

It is possible to define set (), ,M id S D which is the common part of sets above

defined. For example, we may have the following requirements for the path: it

must cross from the point (square) to the selected region, it must omit selected

points, it must cross inside selected region and it must be "off-roads". This situation

may concern e.g. movement path for attacking company, which must move from

the occupied region to the region occupied by the opposite unit, inside the zone of

attack, omitting in this zone, for example, recognized minefields. Definition of the

set (), ,M id S D in this situation is following (we use (5.36), (5.38), (5.39) and (5.42)):

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

167

() (){

()}

{1,..., ()}

1

, , (, ,) (,), : (,) ()

 (,) () (,) 1 1

m LW
M id S D id S D w id m w id m OW id

w id m NP id w id m W S D

µ

µ

∈

= = ∀ ∈ ∧

∧ ∉ ∧ ∈ ∧ = ∧ ≥

i

 (5.43)

5.3.1.3. March organization determination

March organization includes the determination of such elements as: number

of columns, order of units in march columns and number and place of stops.

Number (#) of columns results from tactical rules and depends on the tactical

level of the unit: for the battalion level #columns=1, for the brigade level

#columns∈{1,2,3}; for the division level #columns∈{3,4,5}. In Fig. 5.9 each brigade

has a single march column consisting of two battalions equipped with 4 companies

each one; unit 111 is the head of the 1st brigade column (and simultaneously it is

the head of the 1st battalion column); dc – distance in battalion column between

companies, lc – company column length; db – distance in brigade column between

battalions. Order of units in march column results from tactical rules as well

(algorithm Units_Order_In_March_Column_Determ(id’), see Table 5.3).

Fig. 5.9. Example of march organization in three columns

Number of stops ()stopsc id is calculated as follows (algorithm

Number_of_Stops_Determ(id’), see Table 5.3):

()

()

(,) (,) () () ()
() max ,0

() ()

D S rest avg path

stops

avg stop

t id t t id t t id v id L id
c id

v id t id s

  
− − ⋅ − 

 =  
⋅ + ∆    

 (5.44)

5. Automatization and Simulation of Selected Decision Processes

168

where: (,)Dt id t – demanded ending time of the march for the id unit, (,)St id t –

starting time of the march for the id unit (as in (5.31)), (,) (,) 0D St id t t id t> ≥ , ()restt id –

duration time of the rest for the id unit, ()avgv id – average march velocity for the id

unit, ()pathL id – length of the path determined for the id unit (in km), ()stopt id –

duration time of the stop for the id unit, s∆ – time interval between stops. In

practice, values of parameters are as follows: ()restt id ≈24h, []() 30 40 km/havgv id ∈ ÷ ,

() 1 hstopt id ≈ , []3, 4 hs∆ ∈ .

Place of stops are fixed after path determination and algorithm

Place_Of_Stops_Determ(id’) (see Table 5.3) takes into account ()stopsc id and the FCam

function (see Table 2.1) to find optimal positions of stops.

5.3.1.4. Detailed march schedule determination

Detailed movement schedule for id’ unit is defined as follows (procedure

Detailed_Schedule_Determ(id') in Table 5.3):

0(',) , , (', ,), (', ,)H id t S D id S D T id S Dµ= (5.45)

where: t0 – starting moment of the schedule realization; (', ,)T id S D – vector of

moments of achieving nodes on the path,
1, ((', ,))

(', ,) (',)
m LW id S D

T id S D t id m
µ=

= ,

(',)t id m – moment of achieving the m-th node on the path,

()
1

0
1

(',), (', 1)
(',)

(',)

m

j

L w id j w id j
t id m t

v id j

−

=

+

= +∑ (5.46)

and L(w(id’,j),w(id’,j+1)) describes the geometric distance between the j-th and the

(j+1)-st nodes on the path, LW(µ(id',S,D) – number of nodes on the path for id’ unit.

After determining MDS(id’) each unit id’ is subordinate to battalion id, the order is

sent by automata to each of the id’ units. The idea of determining the march route

for unit id is presented in Fig. 5.10. In this figure we have three checkpoints: P1=PS,

P2 and P3=PD (the path for all units must follow these points). P1 is the starting

point of the march (in this point the head of the march column consisting of three

units is formed), P3 is the end point of the march (at this point the march column is

resolved), P2 is the intermediate point of the march. The path between P1 and P3 is

common for all units, however each unit has its own path from subarea of S to P1

and from P3 to subarea of D.

In general, the automata uses two types of categories of criteria for

synchronous movement scheduling of the K object (unit) columns defined in

chapter 4.2.1.1: (4.14) and (4.15). Taking into account that unit id is equivalent to

the k-th column we can write the following equivalence between notations being

used in chapters 4.2-4.3 and this chapter:

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

169

1(), ()
(,)r r

k

i k i k
v v k r

+
≡ , () (,)ri k w k r≡ , ()1(), ()

(,), (, 1)r ri k i k
d L w k r w k r

+
≡ + , ()()p pr k in id= .

One of the formulations of the optimization problem for movement

synchronization scheduling of K objects used in the automata is presented in

chapter 4.3.1 and methods for solving it in chapter 4.3.2. Theses methods are

implemented in the automata with a common name March_Schedule_Determ(id')

(see Table 5.3). One of the methods being used inside the previous one is

Paths_Determ(id').

Fig. 5.10. An example of a march route (path) for three units id’∈id (filled squares) from the S source
area to the D destination area (dots represent crossroads from a digital map)

5.3.2. The Direct March Control

 The direct march control process contains such phases as: command,

reporting and reaction to fault situations during march simulation (Tarapata,

2007e). Let us remember that the automata replaces the battalion commander and

manages subordinate units (company or/and platoons and equivalent).

 In the movement simulation we "see" the units column on the road twofold:

(a) as occupying arcs (part of the roads) and nodes (crossroads) of the Z2 network

(from equation (2.4)), (b) as a sequence of squares of the Z1 network (from (2.4)) by

which the arc crosses. In case (a) we move the head and the tail of the column and

we register arcs of Z2 in which the head and the tail are located with the degrees of

crossing these arcs. In case (b) we locate the head and the tail of the column on the

squares of the Z1 network and we move the "sequence" of these squares (from the

head to the tail).

Movement of the unit on the road (deployed in the column) is done by

determining the sequence of nodes (crossroads) and arcs (part of the roads) of the

Z2 network and next we execute the movement from crossroad/square to

5. Automatization and Simulation of Selected Decision Processes

170

crossroad/square (procedure Simulate_Unit_Movement(id’) in Table 5.3, see also

chapter 6.1.3).

5.3.2.1. Identifying fault situations during a march simulation and automata

reactions

The automata for marching on the battalion level reacts to fault situations

during the march simulation presented below (procedure

React_To_Fault_Situations(id’), see Table 5.3):

1. Current velocity of a subordinate unit differs from the scheduled velocity;
Reaction: (a) If a unit is the head of the column and it does not move at

planned velocity then increase the velocity (in case of delay) or decrease it (in case

of acceleration); (b) If a unit is not the head of the column then adapt the velocity to

the velocity of the preceding unit.

2. Reaching critical fuel level in one of the subordinate units;
Reaction: Report to the automatic commander. Attempt refuelling at the next

stop or refuel as soon as possible.

3. Detection of an opponent unit;
Reaction: If the opponent forces are overwhelming (opponent combat

potential is greater than the threshold value) and distance between own and

opponent units is relatively small then the unit is stopped, it goes to defensive

position and reports to the commander. Otherwise, reports only to the

commander.

4. Detection of a minefield;
Reaction: Stop and report to the commander.

5. Loss of capability to execute march (destruction of part of the march route (e.g.
bridge, river crossing), other cause of impassability);

Reaction: (a) If the route is impassable due to destruction of a part of the

march route then attempt to find a detour. Report to commander; (b) If other cause

of impassability then take defensive position and report to the commander.

6. Contamination of part of the march route or a subordinate unit;
Reaction: Report to commander. If degree of contamination is low then run

chemical defence and continue a march, otherwise try to exit from contaminated

area.

 Situations which require reporting to the superior of the battalion (procedure

Report_To_Commander(id’) in Table 5.3):

(a) achieving checkpoints, stop area or rest area;
(b) slowing down velocity which causes delays;
(c) encountering contamination;
(d) encountering a minefield;
(e) reaching 75% and 50% of standard fuel level;
(f) capability loss of march execution (reporting the cause of capability loss);
(g) detection of opponent units.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

171

5.3.2.2. Velocity calculation

The important problem during the simulation is to set the current velocity of

the unit id because of the necessity for synchronous movement of many columns.

The procedure of the velocity setting (procedure Adapt_March_Velocity(id’), see

Table 5.3) inside the n-th square consists of two cases: (a) when the unit id is not

engaged in combat in the n-th square; (b) when the unit id is engaged in combat in

the n-th square.

In case (a) the current velocity vcur(id,n) of the unit id in the n-th terrain square is

calculated as follows:

vcur(id,n)=min{ (),slowdv id n , vdec(id,n)} (5.47)

where: (),slowdv id n – maximal velocity of the unit id in the n-th square taking into

account topographical conditions, (),slowdv id n is equivalent to ()(), ,slowdv id n n from

(2.17),

vdec(id,n) – velocity resulting from the commander decision and equals

v(id',j) in (5.46), id'≡id, j≡n.

If the unit id is the head of column and it does not move with planned

velocity vdec(id,n) then the velocity is increased (in case of delay) or decreased (in

case of acceleration). If the unit id is not the head of the column then the velocity of

the unit id is adapted to the velocity of the preceding unit. This movement method

is known as follow-the-leader (e.g. in Fig. 5.9 the leader of the 1st brigade is unit

111).

In case (b) the current velocity vcur(id,n) of the unit id in the n-th square is calculated

as follows:

(){ }= i(,) min (,), , , , (,)slowd
cur A B decv id n f v id U U dist v id n (5.48)

where: i i i i(, , ,)f – function describing the velocity in the square dependent on

vslowd(id, i), potentials of the unit id of side A (UA) and B (UB) which are fighting and

distance (dist) between fighting sides.

5.3.2.3. Fuel consumption calculation

Fuel consumption FC(id,veh,u) (procedure Fuel_Consumption_Determ(id’) in

Table 5.3) on the u part of the path for the type of vehicle veh belonging to the id

unit is calculated as follows:

()
(, ,) () (,) (,)

100

NFC veh
FC id veh u FLen u FCC u veh N id veh= ⋅ ⋅ ⋅ (5.49)

where: FLen(u) describes the length of the u part of a path (see Table 2.2),

FCC(u,veh) – fuel consumption coefficient for the u part of the path and for the

vehicle type veh, NFC(veh) – normative average fuel consumption for the veh type

5. Automatization and Simulation of Selected Decision Processes

172

of vehicle (per 100km), N(id,veh) – number of vehicles of veh type in the id unit.

Fuel consumption coefficient FCC is calculated as follows:

() ()() ()(), 1.0 1.0FCC u veh MTC veh UC u= + ⋅ + (5.50)

where MTC(veh) describes the mechanical-tactical coefficient and UC(u) –

utilization coefficient, veh∈K_Veh resulting from logistic calculations (see details in

(Tarapata, 2007e)).

5.3.3. Automata Implementation

The automata is implemented in ADA language and it represents a part of an

automatic commander on the battalion level (Najgebauer et al., 2007b; Tarapata,

2007e). They realize their own tasks and pass on tasks to subordinate units.

Simulation objects and their methods are managed by a dedicated simulation

kernel (extension of ADA language). Object methods are divided into two sets:

(1) non-simulation methods – designed in order to set and get values of attributes,

specific calculations and database operations; (2) simulation methods – prepared

for synchronous ("wait-for" methods) and asynchronous ("tell" methods) data

sending. The simulation kernel is an object package based upon a permanent

process (low level ADA language task). The simulation event is stored in one of the

data structures: linked list (O(n) complexity) or effective BST tree (log2(n)

complexity). Events are sorted in chronological order resulting from timestamps

(Pierzchała, 2005). In Fig. 5.11 and Fig. 5.12 general diagrams of the simulation

kernel and other important associated objects are shown.

Fig. 5.11. Class diagrams of simulation kernel package (Najgebauer et al., 2005)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

173

Fig. 5.12. Diagram of classes associated with the simulation kernel package (Najgebauer et al., 2005)

Procedures implemented and used for decision planning and direct march

control processes are presented in Table 5.3.

Some simulation methods for movement of individual and group objects as

well as the method of cooperative movement simulation are presented in chapter

5.4. Moreover, a case study is presented in chapter 6.1.

Table 5.3. Procedures implemented and used for decision planning and direct march control
processes in the march automata

Procedures implemented and used for each

unit id’∈id for the decision planning process

Procedures implemented and

used for each unit id’∈id for the direct

march control process

Units_Order_In_March_Column_Determ(id’)

Column_Length_Determ(id’)

Number_of_Stops_Determ(id’)

Place_Of_Stops_Determ(id’)

Ending_Point_PD_Determ(id’)

March_Schedule_Determ(id’)

 Paths_Determ(id’)

 Path_ S_To_PS_Determ(id’)

 Common_Path_PS_To_PD(id’)

 Path_ PD_To_D_Determ(id’)

 Detailed_Schedule_Determ(id’)

March_Simulation(id’)

 Simulate_Unit_Movement(id’)

 React_To_Fault_Situations(id’)

 Fuel_Consumption_Determ(id’)

 Adapt_March_Velocity(id’)

 Report_To_Commander(id’)

5. Automatization and Simulation of Selected Decision Processes

174

5.4. Methods for Movement Simulation of Individual and Group Objects

5.4.1. Method for Movement Simulation of Individual Objects

Presented here are examples of movement simulation of military objects,

which are carried out in the environment of a simulation object-oriented language

MODSIM II (Modsim, 1995). Therefore, we consequently use the notation of this

language. Each of the military objects may be considered as a separate MODSIM

object:

• VehicleObj = OBJECT

 nr : INTEGER; (* object number *)

 nr_nad : INTEGER; (* number of superior unit *)

 v_max : INETEGR; (* maximal speed *)

 rodz : BOOLEAN; (* object type: TRUE - centipeded,

 FALSE - vehicular)

 ... other fields (see attributes vector of the military unit in

 (Tarapata, 2000b; 2000d))
 ASK METHOD SetFields(IN nr, nr_nad, v_max: INTEGER;...);

 ASK METHOD ObjInit();

END OBJECT;

• Wsp = RECORD

 x, y, z : REAL;

END RECORD;

• NodeObj=OBJECT(ImageObj, QueueObj)

 Translation : PointType;

 Nr : INTEGER;

 ... other methods defining a node

 END OBJECT;

• LinkObj=OBJECT(ImageObj);

 Source, Destination : NodeObj;

 ... other fields and methods defining the network

 link (arc)

END OBJECT;

• NetworkObj = OBJECT

 NrOfNodes : INTEGER; (* number of nodes *)

 ASK METHOD GiveLink(IN node1, node2 : NodeObj): LinkObj;

 ASK METHOD GiveNode(IN nr : INTEGER) : NodeObj;

 ... other methods defining the network

 END OBJECT;

• DynVehicleObj = OBJECT(VehicleObj, DynImageObj)

 Course, Speed : REAL; (* inherited from MovingObj *)

 MovingTo : BOOLEAN; (* inherited from MovingObj *)

 RotationSpeed : REAL; (* inherited from RotatingObj*)

 RotatingTo : BOOLEAN; (* inherited from RotatingObj*)

 ScaleSpeed : REAL; (* inherited from ScalingObj *)

 ScalingTo : BOOLEAN; (* inherited from ScalingObj *)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

175

 Motion : BOOLEAN; (* inherited from DynamicObj*)

 Translation : PointType; (* inherited from GraphicVObj*)

 ... other fields inherited from superior objects

 Path : ARRAY INTEGER OF INTEGER; (* the field added by

 this object *)

 CurrNode : NodeObj;

 ASK METHOD SetCourse(IN course : REAL); (*inherited

 from MovingObj*)

 ASK METHOD SetSpeed(IN speed : REAL);

 TELL METHOD MoveTo(IN XDest, YDest : REAL);

 TELL METHOD FollowPath(IN path : PoinArrayType);

 ASK METHOD SetRotationSpeed(IN rotSpeed : REAL);

 (*inherited from

 RotatingObj*)

 TELL METHOD RotateTo(IN theta : REAL);

 ASK METHOD SetScaleSpeed(IN scaleSpeed : REAL);

 (*inher. from ScalingObj*)

 TELL METHOD ScaleTo(In xScale, yScale : REAL);

 ASK METHOD StartMotion;

 (*inher. from DynamicObj*)

 ASK METHOD StopMotion;

 ASK METHOD DynamicUpdate(IN currTime, elapsedTime : REAL);

 ASK METHOD SetCurrNode(IN node : NodeObj);

 (* methods added by this object*)

 ASK METHOD SetPath(IN path : ARRAY INTEGER OF INTEGER);

 ASK METHOD FindPath(IN nr_wpocz, nr_wkon: INTEGER;

 IN net : NetworkObj): ARRAY INTEGER

 OF INTEGER;

 TELL METHOD MoveVehicle(IN NodeS, NodeD : NodeObj);

 ... other methods inherited from superior objects

 ASK METHOD ObjInit();

END OBJECT;

The VehicleObj object contains attributes of the military object, as

information indispensable considering terrain traffic possibility by this object, etc.

The Wsp record contains information about coordinates. NodeObj and

LinkObj objects contain definitions of the network node and arc, respectively.

NetworkObj object defines the network containing, among other things,

information about network nodes (coordinates and the size of the node) and links.

The DynVehicleObj object describes a military object containing,

additionally, the possibility of moving and imaging, and inheriting both from

VehicleObj and DynImageObj.

The DynImageObj object (Modsim, 1995; Simgraphics, 1995) is the standard

object of the SIMGRAPHICS II and describes the dynamic graphical object:

5. Automatization and Simulation of Selected Decision Processes

176

DynImageObj=OBJECT(ImageObj,MovingObj,RotatingObj,ScalingObj);

 ... fields and methods (see (Simgraphics, 1995, pp. 192-194))
END OBJECT;

This object may be drawn, moved, scaled and rotated with respect to

simulation time. In this connection the DynVehicleObj object has the same

properties because it inherited from the DynImageObj.

The most important properties of the DynVehicleObj object are presented

below:

• inherited from MovingObj:
FIELDS:

* Course – actual course (direction) of the object in radians in the world

 coordinate system;

 * Speed – object speed in the world coordinate units per time unit;

 * MovingTo – TRUE if object is actually moving;

METHODS:

* ASK METHOD SetCourse(...) – sets the direction in which the object

 travels;

 * ASK METHOD SetSpeed(...) – sets the speed of the object;

* TELL METHOD MoveTo(...) – moves the object to a specified point.

 The method stops when the object arrives at its destination.

* TELL METHOD FollowPath(...) – moves the object along a path

 defined by an array of points. This method stops when the object

 arrives at the last point of the array. To stop it from continuing we

 should use Interrupt.

• inherited from RotatingObj:
FIELDS:

 * RotationSpeed – actual speed of rotation in radians per seconds;

 * RotatingTo – TRUE if the object is actually rotating;

METHODS:

* ASK METHOD SetRotationSpeed(...) – sets the speed of the

 rotation in radians per second. Negative values cause clockwise

 rotation;

* TELL METHOD RotateTo(...) – rotates the object by angle in

 radians. Does not stop the execution of the program, but is carried out

 synchronically with other simulation methods;

• inherited from ScalingObj :
FIELDS:

 * ScaleSpeed – actual speed of object scaling;

 * ScalingTo – TRUE if object actually scaling;

METHODS:

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

177

* ASK METHOD SetScaleSpeed(...) – sets the amount that is added to

 an object scaling factor every unit of time. For example, with the scale of

 1.0, the object becomes twice as big after 1 unit of time, 3 times as big

 after 2 unit of time, etc.;

* TELL METHOD ScaleTo(...) – synchronic scaling of the object to the

 point defined as the method parameter with speed ScaleSpeed;

• inherited from DynamicObj (which was inherited from MovingObj,

 RotatingObj, ScalingObj) :
FIELDS:

 * Motion – TRUE if object is currently moving;

METHODS:

* ASK METHOD StartMotion – starts an object movement. After the

 method is invoked the DynamicUpdate method (described below)

 which is called automatically from the runtime library;

* ASK METHOD StopMotion – stops an object from moving.

 DynamicUpdate method no longer is invoked from the runtime library;

* ASK METHOD DynamicUpdate(IN currTime, elapsedTime : REAL)

 – called periodically by the timing routine to update animation.

Animation (moving) of the DynImageObj object type can be done in two

ways. The first way is to set the object fields Course and Speed and invoke the

StartMotion method of this object. It causes the object movement with fixed

attributes. The second way is to use TELL or WAIT FOR instructions for the TELL

method (e.g. MoveTo, ScaleTo, RotateTo), which causes time elapsing and

synchronous invoking TELL methods, which are stopped after reaching

the destination point.

The fields and methods added by DynVehicleObj are the following:

FIELDS:

 * CurrNode ;

 * Path ;

METHODS:

 * ASK METHOD SetCurrNode(...);

 * ASK METHOD FindPath(...);

 * TELL METHOD MoveVehicle(...).

The CurrNode field contains information about the network node lastly

achieved by the object. The Path field contains an array of node numbers

belonging to the path for the current object.

SetCurrNode(...) method is invoked when the object achieves the next

node on its path.

5. Automatization and Simulation of Selected Decision Processes

178

FindPath(...) method sets the path for an object. The result is an array of

node numbers belonging to the path from the starting node to the ending node for

the current object.

TELL method MoveVehicle(IN NodeS, NodeD : NodeObj) causes

synchronous movement of the object from NodeS to NodeD. This is the most

important method from the point of view of movement simulation. Possible code

of it is presented in Example 5.1.

Example 5.1

TELL METHOD MoveVehicle (IN NodeS, NodeD : NodeObj);

 VAR

 link : LinkObj;

 NetWindow : NetworkObj;

 i : INTEGER;

 xd,xs,yd,ys : REAL;

 exit : BOOLEAN;

BEGIN

1 ASK SELF TO DisplayAt(ASK NodeS Translation.x,

 ASK NodeS Translation.y);

2 WHILE (i < > HIGH(Path)+1) AND (NOT exit)

3 INC(i);

4 IF i < HIGH(Path)

5 link := ASK NetWindow TO GiveLink(

 ASK NetWindow TO GiveNode(ASK SELF Path[i]),

 ASK NetWindow TO GiveNode(ASK SELF Path[i+1]));

6 IF link <> NILOBJ

 { object moving }

7 NodeD := ASK link Destination;

8 NodeS := ASK link Source;

9 xs:=ASK NodeS Translation.x;

10 ys:=ASK NodeS Translation.y;

11 xd:=ASK NodeD Translation.x;

12 yd:=ASK NodeD Translation.y;

13 ASK SELF TO SetRotationSpeed(RotationSpeed);

14 WAIT FOR SELF TO RotateTo(ATAN2(ys-yd,xs-xd)+pi);

15 ON INTERRUPT

16 IF SELF<>NILOBJ

17 DISPOSE(SELF);

18 END IF;

19 exit:=TRUE;

20 END WAIT;

21 ASK SELF TO SetSpeed(Speed);

22 WAIT FOR SELF TO MoveTo(xd, yd);

23 ON INTERRUPT

24 IF SELF<>NILOBJ

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

179

25 DISPOSE(SELF);

26 END IF;

27 exit:=TRUE;

28 END WAIT;

29 END IF;

30 END IF;

31 END WHILE;

END METHOD;

In line 14 the rotation with a fixed angle is done. In line 21 the object speed on

the arc from NodeS to NodeD is set. This speed may be known by solving the

problem described in chapter 5.3.2.2. Invoking of the method to start

a synchronous object movement to the specified point (node) is presented in line

22. Independently of this, objects may be moved by means of the StartMotion

method (see description earlier presented).

The full invoking of an object movement may resemble that in Example 5.2.

Example 5.2

 .

 .

 .

 VAR

 vehicle : DynVehicleObj;

 NetWindow : NetworkObj;

 path : ARRAY INTEGER OF INTEGER;

BEGIN

NEW(vehicle);

 .

 .

 .

path:=ASK vehicle TO

 FindPath(NrOfStartingNode,NrOfEndingNode,NetWindow);

ASK vehicle TO SetPath(path);

nodeS:= ASK NetWindow TO GiveNode(NrOfStartingNode) ;

nodeD:= ASK NetWindow TO GiveNode(NrOfEndingNode) ;

TELL vehicle TO MoveVehicle(nodeS, nodeD);

StartSimulation();

 .

 .

 .

StopSimulation();

END METHOD;

5. Automatization and Simulation of Selected Decision Processes

180

5.4.2. Method for Movement Simulation of Group Objects

A method of movement simulation for grouped objects is strictly related to

the movement of individual objects. An example of a grouped object is a column

(convoy) of individual objects. In this case, movement of these objects may

resemble that in Example 5.3.

Example 5.3

 .

 .

 .

 VAR

 VehicleColumn : ARRAY INTEGER, INTEGER OF VehicleObj;

 ColumnsNumbers,

 HowManyInColumn : INTEGER;

 delayTime : REAL;

BEGIN

 NEW(VehicleColumn,1..ColumnsNumbers,1..HowManyInColumn);

 FOR i:=1 TO ColumnsNumbers

 FOR j:=1 TO HowManyInColumn

 NEW(VehicleColumn[i,j]);

 path:=ASK vehicle TO FindPath(NrOfStartingNode+i,

 NrOfEndingNode+j,NetWindow);

 ASK VehicleColumn[i,j] TO SetPath(path);

 nodeS:=ASK NetWindow TO GiveNode(NrOfStartingNode+i);

 nodeD:= ASK NetWindow TO GiveNode(NrOfEndingNode+j);

 TELL VehicleColumn[i,j] TO MoveVehicle(nodeS,nodeD)

 IN delayTime;

 END FOR;

 END FOR;

 StartSimulation();

 .

 .

 .

 StopSimulation();

END METHOD;

Using the instruction "TELL VehicleColumn[i,j] TO

MoveVehicle(nodeS,nodeD) IN delayTime" causes that particular object of

the column to follow the previous object (that is second behind the first, third

behind the second, etc.) with a delay equal to delayTime. The value of this delay

may be changed and then we can use the StartMotion() and DynamicUpdate()

methods to dynamically change the path for each object.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

181

5.4.3. Method for Cooperating Objects Movement Simulation and

Management

To plan and control K units movement during simulation described in

chapters 5.3.1 and 5.3.2 the Movement Synchronization Manager (MSM) has been

proposed (Tarapata, 2007e; 2010b) and its idea is presented in Fig. 5.13.

Fig. 5.13. The idea of the Movement Synchronization Manager

The first step (before simulation) is to run the Movement Planning Manager

(MPM) which plans the movement of K objects by solving the optimization

problem defined in chapter 5.3.1 (depending on user preferences). The MSM is

started when the unit movement simulation starts. It keeps information about

group (arrangement) pattern (GP) of K monitored units, type of distance measure

(TDM) between the current group and group pattern, and acceptable value of distance

(AVD). When the simulation starts the MSM is informed about each change of

location of the monitored units and then the procedure From-Pattern Distance

Calculator is executed. This procedure calculates the distance from GP taking into

account the defined distance measure TDM, AVD and current locations of K units

being monitored. Next, the procedure Movement Plan Modification Decision-Maker is

5. Automatization and Simulation of Selected Decision Processes

182

executed. If a calculated "distance" is greater than the acceptable value of the AVD

"distance" and communication between the commanding unit and monitored units

exists (we simulate a commander, which sees or knows about departures from the

plan and decides to synchronize movement of units subordinate to him using the

communication network) then the Movement Planning Manager (MPM) starts to

search for a new schedule for the K units.

Note that the group pattern units (GP) have been defined twofold: (1) using

the geographical (terrain) distance; (2) using time. The definition of the time group

pattern is presented in chapter 4.2.1.2 as the MSST problem (more precisely: as

instances of the ()p kτ time). The definition of the terrain distance group pattern is

presented in chapter 4.2.1.3 as the MSSD problem.

5.5. Summary

The models and methods described in the chapter are used in a real

simulation support system for military operational training (Antkiewicz et al.,

2011b; Najgebauer et al., 2007b) and/or can be used in Computer Generated Forces

systems. The presented methods and their implementations are very promising in

context of Computer Assisted Exercises management and effectiveness. By using, for

example, a decision automata at the battalion level, we can save a lot of time and

decrease the number of training participants, so even very complex exercises can

be organized and carried out by analyzing and go through different scenarios of

military conflicts.

There are some conclusions related to the presented decision automata. The

presented multicriteria weighted graph similarity problem (MWGSP) combines

well-known structural and rarely considered non-structural (quantitative)

similarity between graphs as models of some objects. The approach to structural

similarity between graph vertices adopted from (Blondel et al., 2004) can be

improved (Melnik et al., 2002; Senellart & Blondel, 2003) because of the definition

of the similarity matrix (5.15) is still not totally satisfactory (e.g. it is not always

diagonally dominant for self-similarity). Different types of similarities should be

compared with graph vertices similarity. Moreover, different types of methods for

solving multicriteria problems (Eschenauer et al., 1990) should be checked for

solving MWGSP. Let us note that we can easily adopt centrality measures from

social networks to use them or their combinations instead sij in (5.17) (Bartosiak et

al., 2011).

One of the aspects of automatization of the decision processes – movement

planning, synchronization and simulation is essential not only in CGF systems.

Simulation systems for military trainings should have modules for management

(planning, synchronization) multi-objects movement. The quality of this

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

183

management has an effect on accuracy, effectiveness and other characteristics of

simulated battlefield systems. In general, modelling, optimization and simulation

of multi-convoy redeployment (for simultaneous movement of many columns) are

very complicated processes. Complexity of these processes depends on the

following conditions: number of convoys (the greater the number of convoys the

more complicated the scheduling of redeployment is); number of objects in each

convoy (the longer the convoy the more complicated the scheduling of

redeployment is); Have convoys been redeployed simultaneously? Can convoys be

destroyed during redeployment? Can the terrain-based network be destroyed

during redeployment? Have convoys been redeployed through disjoint routes?

Have convoys achieved selected positions (nodes) at a fixed time? Do convoys

have to start at the same time? Have convoys determined any action strips for

moving? Can convoys be joined and separated during redeployment? Do convoys

have to cross through fixed nodes?, etc. Some of these aspects are considered in

chapter 5.3.1 and in the papers: (Beautement et al., 2006; Benton et al., 1995;

Cassandras et al., 1995; Gelenbe et al., 2004; Karr et al., 1995; Kreitzberg et al., 1990;

Lee & Fishwick, 1995; Lee, 1996; Logan & Sloman, 1997; Logan, 1997; Longtin &

Megherbi, 1995; Mohn, 1994; Pai & Reissell, 1994; Sahin et al., 2008;

Schrijver & Seymour, 1992; Sun et al., 2008; Rajput & Karr, 1994; Tarapata, 1998;

1999b; 2000f; 2001; 2003a; 2004a; 2005a; 2005b; 2007e; 2010b; 2011b; Tuft et al., 2006;

Wang, 2006; Wellman et al., 1995; Zafar et al., 2006).

A very important problem, which deals with automatization of decision

processes, is the calibration of simulation models of complex processes

(Antkiewicz et al., 2006; Dockery & Woodcock, 1993; Hofmann, 2005). It enables the

tuning of these models. This process has an influence on one of the most important

features of simulation models as is adequacy.

Some additional applications of presented methods are described in

chapter 6.

6. Selected Applications in Real Systems

In this chapter some applications in real systems of presented models and

algorithms are described. In chapter 6.1 an application and specialization of

movement planning and simulation models and algorithms in real simulation

systems Zlocien and MSCombat are presented. Chapter 6.2 contains a description of

knowledge-based pattern recognition tools to support mission planning and

simulation as an example of tools, which use models and algorithms presented in

chapter 5.2. In chapter 6.3 we described applications in security and crisis

management systems.

6.1. Movement Planning and Simulation in the Zlocien and MSCombat

Systems

6.1.1. Simulation Based Operational Training Support System (SBOTSS)

Zlocien and MSCombat: a Short Overview

The stochastic simulator being considered is the Simulation Based Operational

Training Support System (SBOTSS) – Zlocien (Antkiewicz et al., 2008e; 2009b; 2010f;

Najgebauer et al., 2004a; 2007b; 2008b; Zlocien, 2002) which has been built at the

Cybernetics Faculty of the Military University of Technology in Warsaw (Poland)

and the author of this work is a member of the team, which has built the system.

Table 6.1. Description of the Simulation Based Operational Training Support System (SBOTSS) - Zlocien

Feature Description

Domain Land operations, corps-division-brigade levels. Supported by detailed
logistics and integrated intelligence operations, air support, EW.

Span ADRG digitized maps and VPF terrain data permit the model to be used
worldwide. The Terrain Rectangle Model (TRM) and Road_and_Railway
Net Model (R&RNM) can be used to build terrain files to support the
Zlocien model.

Environment Rectangle-based terrain aggregates regional terrain and environmental
characteristics: traffic-ability, elevation, vegetation, chemical

contamination, and weather – granularity is 200m×200m. Railways and
roads are mapped via the independent Road_and_Railway Net Model,
which is complementary to the Terrain Rectangle Model. Specific terrain
or engineering objects are modelled separately and can be located on the
maps transformed by terrain models – TRM and R&RNM.

Software Combat simulator, After Action Review (AAR) procedures, Calibrator,
Set of DBs (operational, terrain, scenario), Scenario Editor, Portal SBOTSS
Zlocien, Reporter AAR, Visualization Server, ADatP3 Editor.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

185

The SBOTSS Zlocien has been put into practice at the War Games and Simulation

Centre of the National Defence University in Warsaw. This system has been used

during Computer Assisted Exercises (CAXes). The Zlocien is an integrated,

interactive, multi-sided land, analysis and training support model (with logistics,

engineering, electronic warfare and intelligence functions), which realizes

stochastic ground-combat attrition. The system is a federation, High Level

Architecture (HLA) compliant (Kuhl et al., 1999), cooperating with C3 systems

(Command, Control and Communication, C3) and heterogeneous platform (Sun

Solaris, Windows NT). The detail description of the Zlocien system is presented in

Table 6.1. The TRM is equivalent to the Z1 network from (2.2) and the R&RNM – to

the Z2 network from (2.4).

The Modelling and Simulation of Combat (MSCombat) system has been also built

at the Cybernetics Faculty of the Military University of Technology in Warsaw. The

basic features of the environment are as follows (Najgebauer et al., 1999b): the

conflict scenario preparing, mission formulating for two sides, support of decision

making process on the division level, simulation of decision making in the lower

level, simulation of combat actions (combat units manoeuvre battle simulation),

communication simulation, realization of external tasks in the interactive mode,

commander interference with game during the simulation process, evaluation of

decisions made as a result of data collected which are connected with two fighting

sides moves and effects of these moves. The MSCombat is realized on the basis of

MODSIM III and SIMOBJECT language. The hardware platform is heterogeneous,

so simulation can be executed on PC Pentium and Risc platforms. The RTI API

enables a co-operation of these platforms. The co-operation RTI API specification

environment with MODSIM is possible thanks to special HLA/MODSIM interface.

The General Algebraic Modelling System (GAMS) supplies methods of optimisation

problems solving and is called from the simulation environment.

6.1.2. Models and Algorithms for Movement Planning

Algorithms of movement planning in the Zlocien system allow us to

determine movement plans defined in chapter 5.3.1.2. The algorithms take into

account three types of criteria defined there: time (l1), distance (l2) and degree of

camouflage (l3) (or decamouflage). We can find single-criterion paths or

multicriteria (2- or 3-criteria) paths taking into account the metacriterion function

approach described in chapter 3.3.4.3 with the arc metafunction (3.49).

 To find paths for units, modified shortest path algorithms (SPA) such as

Dijkstra’s, A*, geometric SPA are used in SBOTSS Zlocien (Tarapata, 2004a; 2011b):

• (A) Dijkstra's for finding shortest paths using binary heaps (with complexity

O(m log2 n), where m – number of graph edges (arcs), n – number of graph

nodes); we can also use faster implementations of the Dijkstra's algorithm, e.g.

6.

186

using 4-ary heaps (with complexity

effective for the special structure of the graph (if the graph is

r-ary heap is very effective to represent priority queue in the Dijkstra's or A*

algorithm (Cherkassky

Fig. 6.1. Computational complexity of
heaps: binary (h2), 4-ary (h4), Fibonacci's (hF), binomial (hb) and red

part of terrains used in

• (B) A* for finding the

the case of grid graphs this algorithm converges faster (in

than the Dijkstra’s algorithm

node x’ for the next iteration is based on

()’ ’ min () () : is not a checked nodeg x h x g x h x x+ = +

while, in the Dijkstra’s algorithm:

()’ min () : is not a checked nodeg x g x x=

where: g(x) – length of the shortest path from source node

h(x) – estimation of the

t. It is proved (Hart et al

greater than the real length of the shortest path from node

then A* gives the optimal solution (for

algorithm);

1 Graph G is r-regular if each of its nodes

6. Selected Applications in Real Systems

ary heaps (with complexity O(m log4 n), see Fig. 6.1), whi

effective for the special structure of the graph (if the graph is

ary heap is very effective to represent priority queue in the Dijkstra's or A*

(Cherkassky et al., 1996; Tarjan, 1983));

. Computational complexity of A* (A*) and the Dijkstra's algorithms implemented with
ary (h4), Fibonacci's (hF), binomial (hb) and red-black tree (trb) for

part of terrains used in the Zlocien system with four neighbours for each square

the shortest paths using heuristics (Hart

case of grid graphs this algorithm converges faster (in the

algorithm. In the A* algorithm the criterion for cho

for the next iteration is based on the function:

() {’ ’ min () () : is not a checked nodeg x h x g x h x x+ = +

Dijkstra’s algorithm:

{ }’ min () : is not a checked nodeg x g x x=

length of the shortest path from source node

the length of the shortest path from node x

et al., 1968) that, if the value of the heuristic

real length of the shortest path from node x to target node

optimal solution (for h(x)=0 we have

regular if each of its nodes is adjacent to r nodes.

, which is very

effective for the special structure of the graph (if the graph is r-regular1 then

ary heap is very effective to represent priority queue in the Dijkstra's or A*

Dijkstra's algorithms implemented with
black tree (trb) for the real

em with four neighbours for each square

shortest paths using heuristics (Hart et al., 1968); in

the average case)

riterion for choosing

}’ ’ min () () : is not a checked node

length of the shortest path from source node s to node x;

x to target node

heuristic h(x) is no

to target node t,

=0 we have the Dijkstra’s

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

187

• (C) for determining the shortest geometric paths (Mitchell, 1999). In the Zlocien

system this algorithm supplements two of the above presented algorithms (we

obtain the Hybrid Shortest Path (HSP) algorithm) and it is used in the case when

the size of the network Sz is large (the default is 10 000 nodes, but it is

a parameter set in the so-called calibrator of the simulation system (Antkiewicz

et al., 2006)).

 The idea of the hybrid (HSP) algorithm is described in Fig. 6.2. First we run

HSP (C) to determine squares belonging to the segment linking the source square

with the target square and next the condition whether all of these squares are

passable is checked (starting from the source square). If all of the squares

belonging to this segment are passable then the path has been determined.

Otherwise, the hybrid algorithm runs one of the algorithms (A) or (B) which start

from the last passable square on the segment (or from the one square before the

last passable, or from the two squares before the last passable, etc.) and determine

the shortest path to the target square. If a path exists then it is joined to the part of

the path determined using the HSP algorithm (C), otherwise we use (A) or (B)

algorithms from the source to the target.

Fig. 6.2. The idea of the hybrid algorithm (HSP) for the shortest paths in the Zlocien system

Modifications of mentioned algorithms deal with the following details:

• paths determining in different configurations: from point (region) to point

(region), visiting selected points (regions), omitting selected points (regions,

obstacles), inside or outside selected region, off-roads only, on-roads only,

combined on- and off-roads and others to find different types of movement

plans defined in chapter 5.3.1.2;

6. Selected Applications in Real Systems

188

• if we do not set region inside where we want to find the path then the

algorithm itself iteratively determines the rectangular region which is based on

the line linking source and target points (nodes) of movement, in order to

minimize computational time;

• if we want to find the on-road path only, and there are no nodes of the road

network (Z2) inside the intermediate squares, then the algorithm may

optionally find crossroads (nodes of the road network) that are nearest to

squares inside which the path must cross.

In Table 6.2 the headings of the procedures for finding paths in networks Z1

and Sz in the Zlocien system are presented.

Table 6.2. The headings of the procedures for finding paths in the networks Z1 (left hand side) and
Sz (right hand side)

Procedures for finding paths in Z1 network Procedures for finding paths in Sz network
procedure Determine_Path_On_Squares
 (in Unit_Id,
 in Inside_Region,
 in Region_To_Avoid,
 in Region_From,
 in Region_To,
 in Criterion,
 in Whether_Avoid_Occupied,
 out Path);

procedure Determine_Path_On_Roads
 (in Unit_Id,
 in Inside_Region,
 in Region_To_Avoid,
 in Across_Region,
 in Criterion,
 in Whether_Search_For_Route_Nodes,
 out Path);

In the MSCombat system the first implementation of the SGDP algorithm from

chapter 3.4.3.1 for finding K>1 disjoint paths has been tested.

6.1.3. Models and Algorithms for Movement Simulation

Movement simulation of the units is realized in both terrain models Z1 and

Z2. However, in each of these models we "see" the units during movement in

different ways. We accept the following assumptions and definitions:

1. Small square and big square: small square is the square of the Z1 network; big

square is an aggregated set of small squares (e.g. for the unit at company level

the big square is the square with 4x4 small squares);

2. Possible deployment of the units:

• inside a small square (e.g. reconnaissance patrol on a single vehicle);

• inside a big square (unit at company level may occupy 4x4 small squares);

• on the road in a column (based on arcs of Z2). In this case we "see" the unit

on the road twofold: (1) as occupying arcs (part of the roads)

and nodes (crossroads) of the Z2 network, (2) as a sequence of squares of the

Z1 network through which the arc crosses. In this case we use functions
2

1 2 1: 2WFW OnW W → and 2 1 2 1:FW OnW W W→

from Table 2.1 and

Table 2.2;

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

189

3. Inside the big square the unit is evenly deployed taking into account passable

small squares only (in special cases we omit this assumption).

Movement of the unit, which is deployed in the big square is being done by

determining the sequence of small squares, which create the path for a selected

(e.g. lower left) small square of the big square (using the algorithm presented in the

previous section) and next we realize the movement from square to square. In such

a case we move the big square with the small square granulation (see Fig. 6.3).

Fig. 6.3. The idea of unit movement on the squares of network Z1

 In Fig. 6.3 the big square in which the unit is deployed has 4x4 small squares.

The continuous line describes current deployment of the unit, the dashed line – the

new location (after movement with the small square in the south-west direction).

Dots inside the squares describes that there is some part of the unit. The arrow

from the left side of the big square describes the direction of movement. After the

movement the unit has been cumulated inside the 13 small squares because 3

lower left squares are not passable (because of the lake). Movement across the

"bottleneck" of the terrain (e.g. minefields crossing, bridge crossing) are realized

similarly (using the accumulation of the unit inside small squares).

Movement of the unit on the road (deployed in the column) is done by

determining the sequence of nodes (crossroads) and arcs (part of the roads) of the

Z2 network using the algorithm presented in the previous section and next we

realize the movement from crossroad to crossroad. As it has been written, we "see"

the unit on the road twofold: (1) as occupying arcs (part of the roads) and nodes

(crossroads) of the Z2 network, (2) as sequence of squares of the Z1 network by

which the arc crosses. In the case of (1) we move the head and the tail of the

column and we register arcs of the Z2 on which the head and the tail are located

6. Selected Applications in Real Systems

190

with degrees of crossing these arcs. In the case of (2) we locate the head and the tail

of the column on small squares and we move the sequence of small squares (from

the head to the tail), like in Fig. 6.2.

In both models of movement the unit can move to the next square of its path

if the following criterions are satisfied:

• square is topographically passable;

• square is tactically passable (lack of minefields, lack of an enemy unit (unit can

occupy a square of the enemy unit, if and only, if the enemy unit is destroyed),

number of own units in the square are no greater than a critical value

(default=5)).

The movement can be also interrupted, because of: the lack of fuel, destroying the

unit, commander decision, simulation termination, etc. (see description of fault

situations in chapter 5.3.2.1).

The very important problem of setting the current velocity of the unit id

during movement simulation is described in chapter 5.3.2.2.

For movement simulation of units we use simulation procedures similar to

these, which have been described in chapter 5.4.

6.1.4. Practical Example

In this chapter a practical example of march planning and simulation in the

Zlocien system using automata for a march (see chapter 5.3) is presented. In Fig. 6.4

an initial tactical situation is shown.

Fig. 6.4. Initial tactical situation, 4:00am: two mechanized brigades of the BLUE conflict side
(121 BZ and 123 BZ) receive an order to march

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

191

In the example being considered, 2 mechanized brigades (121 BZ and 123 BZ: each

of the brigades consists of 4 mechanized battalions × 4 mechanized companies

each) of the BLUE side receive the order to march. In the superior order (from

(5.31)):

• destination area for 121 BZ and 123 BZ is set about 30km to the north of the

northern edge of the location area of the RED conflict side;

• distance from the source area S to the destination D is equal to about 110km;

• 5 checkpoints are set.

(a) (b)

Fig. 6.5. Location of the 121 BZ (a) and 123 BZ (b) on the road, 5:50am

In Fig. 6.5 the locations of 121 BZ and 123 BZ, respectively, after nearly 2

hours of marching are presented.

Initial redeployment of the BLUE side is presented in Fig. 6.6a. 121 BZ is

redeployed on the northern-east of the BLUE force redeployment area. 123 BZ is

redeployed south of 121 BZ. In Fig. 6.6b location of 121 BZ and 123 BZ at 5.50am is

shown.

In Fig. 6.7 the fuel level percentage regarding the starting level (4 825 litres) is

presented for selected unit (12111 kz (belonging to 1211 bz from 121 BZ) consisting

of 13 wheeled armoured "Rosomak" carriers) during the 110 km march, from

4:00am to 7:30am. Fuel calculation during a march simulation has been done using

formula (5.49).

In Table 6.3 the average velocities between selected march checkpoints

(descriptions of S, D, PS, PD in chapter 5.3.1.1, see also Fig. 5.10) for 121 BZ and

123 BZ are presented. Average march velocity is equal to about 30km/h. Velocity

calculation has been done using procedures described in chapter 5.3.2.2.

6. Selected Applications in Real Systems

192

(a) (b)

Fig. 6.6. (a) Initial redeployment of the BLUE side, 4:00am and (b) the location of 121 BZ and 123 BZ,
5:50am

Fig. 6.7. Percentage fuel level regarding the starting level (4 825 litres) for 12111 kz (consisting of 13
wheeled armoured "Rosomak" carriers) during march on the distance 110 km, from 4:00am

to 7:30am

Table 6.3. Average velocities between selected march checkpoints for 121 BZ and 123 BZ (in km/h)

Unit S=>PS PS=>PD PD=>D S=>D

121 BZ 12.32 39.65 18.24 29.54

123 BZ 14.07 27.84 22.57 24.65

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

193

6.2. Knowledge-Based Pattern Recognition Tools to Support Mission

Planning and Simulation

6.2.1. A Short Overview of CAVaRS and Guru Systems

In this section we present two tools to support mission planning and

simulation, which have been built at the Cybernetics Faculty of the Military

University of Technology in Warsaw (Poland) and the author of this work is

a member of the team which has built them: (1) the deterministic simulator called

CAVaRS (Course of Action Verification and Recommendation Simulation System)

(Antkiewicz et al., 2011a; 2011b); (2) The System of Automatic Tools for Decision

Support (SATDS) Guru (Antkiewicz et al., 2009c; Guru, 2005).

The CAVaRS may be used as a part of a bigger system, the SATDS Guru, which

supports the Polish C4ISR systems or it may work standalone. The deterministic

and discrete time-driven simulator CAVaRS models two-face land conflict of

military units on the company/battalion level. The simulator is implemented in the

JAVA language. The model concerns a couple of processes of firing interaction and

movement executed by a single military unit. These two complementary models

use a terrain model described by a network of square areas, which aggregates

movement characteristics with 200m×200m granularity (similarly to Zlocien

system). The course of each process depends on many factors, among them: terrain

and weather conditions, conditions and parameters of weapons the units are

equipped with, the type of executed unit activities (attack, defence) and the

distance between opposite units.

Scenarios of the variants of the military scenario in the Knowledge Base Editor of

the simulator CAVaRS can be created in two ways: manually and half-automatic.

In manual mode the variant can be built using military unit templates stored in the

CAVaRS database. In half-automatic mode the military scenario can be imported

from other C3(4)ISR (e.g. C3ISR Jasmin) systems using NATO MIP-DEM

(Multilateral Interoperability Program - Data Exchange Mechanism) and NATO

MIP-JC3IEDM (Joint Consultation, Command and Control Information Exchange Data

Model) integration database schema. The Knowledge Base Editor can import and

transform data from MIP JC3IEDM standard data schema to CAVaRS data schema.

This way is faster than manual mode, because all data of military units or at least

most of them can be imported from other C3(4)ISR systems with detailed data such

as unit location, equipment, weapons, etc.

The purpose of The System of Automatic Tools for Decision Support (SATDS) –

Guru is (Antkiewicz et al., 2009c):

• using expert methods to support decision-making by a commander of an

operational (tactical) level concerning planning military actions;

6. Selected Applications in Real Systems

194

• developing tools for operational training of commanders and field-grade

officers in planning military actions;

• provision of software tools for continuing the collection of multiple experts'

knowledge and the development of knowledge bases for developing user

applications within the scope of expert support for decision-making by

appropriate commanders.

The Guru is an IT system to support, using expert methods, decision-making

in the following Polish C2 (Command and Control) systems: for the ground forces –

Kolorado and Szafran ZT (in cooperation with the Zlocien system), for the air force –

Dunaj and Podbial, for the navy – Leba/MCCIS as well as planning joint operations

on the operational level (see also Antkiewicz et al., 2008c; 2010e).

6.2.2. Practical Example of Using CAVaRS

The example shows elements of knowledge base and the algorithm of nearest

pattern situation searching based on models defined in chapters 5.2.2 and 5.2.3.

The main element of the system is the knowledge base, which consists of

Pattern Situations (PS) (representation of the PDSS set from chapter 5.2.1). Each PS

is connected to the set of Course of Actions (CoA). The example of two PSs and their

CoAs are presented in Fig. 6.8.

(a)

Fig. 6.8. (a) Graphical representation of PS1

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

195

(b)

Fig. 6.8. (b) An area of opposite forces for PS1

The first PS (PS1, see Fig. 6.8a) is connected with two CoAs (see Fig. 6.9a and
Fig. 6.9b). The second PS2 is shown in Fig. 6.10. Parameters have been fixed for
each PS. Fig. 6.8b shows the analyzed area of enemy forces. Parameters of each PS
are kept in the knowledge base (see also Fig. 1.1). Table 6.4 and Table 6.5 show
values of PS parameters.

(a) (b)

Fig. 6.9. (a) Graphical representation of PS1, CoA1; (b) Graphical representation of PS1, CoA2

Coordinates of terrain area for PS1 (NW: north-west corner, NE: north-east
corner, SW: south-west corner, SE: south-east corner):

NW (LP)=515556N 0213922E ; NE (PP)=515740N 0213053E ;

SW (LT)=520056N 0214431E ; SE (PT)=520254N 0213541E.

Potential of own forces: mechanized 444; armoured 61.2; artillery 30;

antiaircraft 0; other 0.

6. Selected Applications in Real Systems

196

Table 6.4. Detailed values of PS1 parameters using notations from (5.1)

i j 5,1
ijSD

5,2
ijSD

5,3
ijSD

5,4
ijSD

5,5
ijSD

5,6
ijSD

5,7
ijSD

0 0 54% 1% 1% 0.069 0 0 0

0 1 44% 4% 1% 0.116 0 0 0

0 2 42% 15% 2% 0.186 0 17.46 94.13

0 3 45% 9% 4% 0.21 190 16.32 23.75

0 4 41% 8% 2% 0.252 80 5.2 0

0 5 42% 24% 1% 0.176 0 0 0

1 0 46% 23% 2% 0.12 0 0 0

1 1 54% 5% 1% 0.162 0 0 0

1 2 37% 15% 0% 0.231 0 26.98 140.8

1 3 47% 13% 0% 0.158 25 5.71 21.35

1 4 45% 10% 0% 0.177 25 1.62 0

1 5 35% 0% 34% 0.168 0 0 0

2 0 2% 0% 58% 0.096 0 0 0

2 1 7% 0% 54% 0.135 0 0 0

2 2 17% 0% 50% 0.183 0 0 0

2 3 11% 0% 38% 0.138 0 0 0

2 4 23% 0% 34% 0.162 0 0 0

2 5 51% 0% 29% 0.179 0 0 0

3 0 2% 0% 46% 0.168 0 0 0

...

5 5 25% 20% 0% 0.013 0 0 0

Fig. 6.10. Graphical representation of PS2

Coordinates of the terrain area for PS2 (NW: north-west corner, NE:

north-east corner, SW: south-west corner, SE: south-east corner):

NW (LP)=520120N 0213451E ; NE (PP)=515943N 0214150E ;

SW (LT)=515858N 0213135E ; SE (PT)=515625N 0213736E.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

197

Potential of own forces: mechanized 320; armoured 73.3; artillery 280;

antiaircraft 0; other 0.

Fig. 6.11. Current situation (CS)

Table 6.5. Detailed values of PS2 parameters using notations from (5.1)

i j 5,1
ijSD

5,2
ijSD

5,3
ijSD

5,4
ijSD

5,5
ijSD

5,6
ijSD

5,7
ijSD

0 0 29% 93% 0% 0.01 0 0 0

0 1 55% 48% 0% 0.06 0 0 0

0 2 91% 1% 0% 0.04 8.62 4.49 0

0 3 84% 10% 0% 0.04 5.38 2.81 0

0 4 84% 11% 0% 0.03 0 5.85 27

0 5 76% 30% 0% 0.01 0 0.65 3

...

2 2 88% 0% 0% 0.03 13 1.44 0

2 3 84% 10% 0% 0.05 60 6.55 0

2 4 59% 44% 0% 0.07 6 0.6 0

2 5 77% 12% 0% 0.06 0 0 0

3 0 66% 33% 0% 0.09 0 0 0

3 1 83% 4% 0% 0.04 0 0 0

3 2 88% 3% 0% 0.02 6.5 0.72 0

3 3 80% 7% 0% 0.08 32.5 3.59 0

3 4 82% 1% 0% 0.1 0 0 0

3 5 81% 0% 0% 0.12 0 0 0

4 0 40% 74% 0% 0.08 66.9 7.39 0

4 1 62% 43% 0% 0.06 32.7 3.61 0

4 2 85% 1% 0% 0.05 93.6 10.4 0

4 3 70% 22% 0% 0.09 0 0 0

4 4 69% 9% 0% 0.15 0 0 0

4 5 87% 4% 0% 0.05 18.9 2.09 0

...

5 5 85% 6% 0% 0.05 85.1 9.41 0

6. Selected Applications in Real Systems

198

Values of each PS parameters of the current situation (see Fig. 6.11) have been

calculated. The algorithm for finding the most similar pattern situation compares

the current situation parameters with each PS from the knowledge base using the

method described in chapters 5.2.2 (the method from chapter 5.2.3 is still being

developed and tested). As a result, the PS1 has been fixed according to the dist

values (equations (5.7) and (5.9)) presented in Table 6.6 because:

 1 2(,) (,)pot potdist CS PS dist CS PS< and 1 2(,) (,)ter terdist CS PS dist CS PS< ,

hence PS1 dominates PS2 from the RD (formula (5.12)) point of view.

Table 6.6. Detailed values of dist parameters from (5.7) and (5.9)

PS (,)potdist CS PS (,)terdist CS PS

PS1 203.61 1.22

PS2 222.32 1.47

6.3. Applications in Security and Crisis Management Systems

6.3.1. MWGSP Approach

In this chapter we will show how to use, described in chapter 5.2.3, the

MWGSP approach with the Social Network (represented by Complex Network)

analyzing and semantic-based terrorist threat indication as well as information

diffusion in networks. Applications presented here are described in detail in

(Bartosiak et al., 2011; Tarapata & Kasprzyk, 2009c; 2010e; Tarapata et al., 2010d).

The method presented in (Tarapata et al., 2010d) introduces an original

approach to knowledge representation as a semantic model, which is further

processed by the inference algorithms and structure graph analysis towards

a complex network (using the MWGSP model). Described models consist of

experience gathered from intelligence experts and several open Internet

knowledge systems such as the Global Terrorism Database. We have managed to

extract core information from several ontologies and fuse them into one domain

model aimed at providing the basis for indirect associations' identification method.

Until now, scientists have tried to construct theoretical models describing the

behaviour of real systems, which is the main reason of Complex Networks

applications (Antkiewicz et al., 2009a; Barabasi & Reka, 2002; Kasprzyk, 2005;

Newman, 2003; Strogatz, 2001; Watts & Strogatz, 1998). The main aim of research

in this area is to uncover the mechanisms hidden in the structure of complex

systems, which can further lead to the discovery of real networks characteristics

and their explanation. Apparently, networks derived from real data (most often

spontaneously growing) have "six degree of separation", power low degree

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

199

distributions, hubs occurring and many other interesting features. Complex

Networks have Scale Free, Small Word and Clustering properties (Wang & Chen,

2003) that make them accurate models of networks such as social networks, in

particular, a terrorist organization with features mentioned above (Antkiewicz et

al., 2008b; Najgebauer et al., 2007a). The Scale Free and Small World networks, while

being fault tolerant, are still very prone to acts of terrorism. The Scale Free feature

distinguish immunity against random attacks (it is hard to hit a hub). The Small

World feature can dramatically affect communication among network nodes.

For the purpose of this application we have developed a transformation from

a created semantic network into a set of Complex Networks. First we have to choose

the ontology, which is the most significant from the analysis point of view. It leads

to leave only a subset of nodes and edges connecting them. At this moment we

have produced a graph with a uniform node and edge type. As a result of the

transformation, one of the possible Complex Networks has been generated. In order

to find a representation of a terrorist organization as a complex network, we

should apply the algorithm presented in Fig. 6.12.

Fig. 6.12. The transition between a semantic network and a complex network using ontology

filtering (Tarapata et al., 2010d)

Formally, we can write transformation T of the semantic network S1 into

a complex network S2 as follows (Tarapata et. al, 2010d):

1 2:
FO

T S S→ , where FO describes filtering ontology from Fig. 6.12, and:

1 1

1 1

1 1 1 1 1 {1,..., } 1 {1,..., }, , { ()} , { ()}i i LF j j LH
n N a A

S G N A f n h a
∈ ∈

∈ ∈

= = , N1, A1 – sets of graph nodes and

arcs, respectively, 1 1 1:i if N Z→ – the i-th function described on the graph nodes,

11,...i LF= , (LF1 – number of node’s functions);
1 1 1:j jh A Z→ – the j-th function

described on the graph arcs, 11,...j LH= (LH1–number of arc functions), *Z – any set

(e.g. types of vertices); S2 – defined by analogy but it has a single function

described on the nodes and arcs:

2 22 2 2 2 2 2, , { ()} ,{ ()}n N a AS G N A f n h a
∈ ∈

= =

6. Selected Applications in Real Systems

200

Next, the MWGSP approach may be used to analyse such a knowledge

representation. For example, in Fig. 6.13 we have a terrorist net that was prepared

and executed during the September 11, 2001 attacks (Krebs, 2000) and in Fig. 6.14

we have a subnet of a terrorist net that hijacked airplanes on the September 11,

2001 with two cases: a long time before hijacking (a) and a short time before

hijacking (b).

Fig. 6.13. Terrorist net that prepared and executed the September 11, 2001 attacks (Krebs, 2000)

When we use the network from Fig. 6.14 as a "normal" communication between

terrorists then we can use the MWGSP approach to recognize the threat situation

(structural similarity between the net from Fig. 6.14a and Fig. 6.14a (self-similarity)

is equal 0.990 and between the net from Fig. 6.14a and Fig. 6.14b is equal 0.880: this

difference can indicate a threat situation; we can also set a threshold value for

similarity changes, which in the opinion of experts, indicate a threat situation). We

can also use quantitative description of these networks (similar to Fig. 6.15) and

analyse them using MWGSP approach.

Z. Tarapata − Models and Algorithms for Knowledge

a)

Fig. 6.14. Terrorist net that hijacked airplanes on
hijacking; (b) a short time before hijacking

Another application is presented in

a communication network (e

can consider, for example, a

organization by analogy). Nodes represent users/workers of the company.

number inside each node describes

In Fig. 6.15a the e-mails net for a "normal" week has been presented. In

Fig. 6.15c, Fig. 6.15d communications inside the company

every week (for the fixed time window

that the 1st week is at least

1st week we obtain the smallest value of

combines a structural and

a)

c)

Fig. 6.15. E-mails net in hierarchical company: (a)

− Models and Algorithms for Knowledge-Based Decision Support and Simulation..

 b)

Terrorist net that hijacked airplanes on the September 11, 2001: (a) a long time before
hijacking; (b) a short time before hijacking

ther application is presented in Fig. 6.15. Here we

communication network (e-mails) in a company with a hierarchical structure (we

for example, a communication network inside a

organization by analogy). Nodes represent users/workers of the company.

umber inside each node describes the number of e-mails that were sent by users.

mails net for a "normal" week has been presented. In

d communications inside the company have been

fixed time window the length equals 1 week). Let

week is at least a similar week to a "normal" week (see

week we obtain the smallest value of the scalar function H(G) fr

structural and a quantitative similarity to a "normal" week).

 b)

 d)

mails net in hierarchical company: (a) "normal" week; (b) 1st week; (c) 2
(d) 3rd week

and Simulation... 201

September 11, 2001: (a) a long time before

. Here we have shown

hierarchical structure (we

a criminal/terrorist

organization by analogy). Nodes represent users/workers of the company. The

were sent by users.

mails net for a "normal" week has been presented. In Fig. 6.15b,

have been shown for

length equals 1 week). Let us observe

(see Table 6.7: for the

from (5.27), which

"normal" week).

week; (c) 2nd week;

6. Selected Applications in Real Systems

202

Table 6.7. Values of scalar function H(G) combining structural (weight α1) and quantitative

(weight α2) similarity measures between graphs representing the e-mail net during a "normal" week
and between 3 weeks from Fig. 6.15

Compared graphs Weights (α1 ; α2)

(0; 1) (0.5; 0.5) (1; 0)

1st week net -0.694 0.144 1

2nd week net -0.646 0.177 1

3rd week net -0.643 0.160 1

The presented MWGSP idea is an original attempt at integrating theories and

practices from many areas, in particular: semantic models, social networks, graph

and network theory, decision theory, data mining and security, as well as

multicriteria optimization. It utilizes the theoretical basis for a very practical

purpose of growing importance and demand: widely understood countering

terrorism. Moreover, the presented approach combines well-known structural and

rarely considered non-structural (quantitative) similarity between graphs as

models of objects and can significantly improve social network analysis. Our

models and methods of network analysis have been used in the criminal justice

domain to search large datasets for associations between crime entities in order to

facilitate crime investigation. Let us note that we can easily adopt centrality

measures from social networks to use them or their combinations instead sij in

(5.17) (Bartosiak et al., 2011; Tarapata et al., 2010d). It is also possible to use MWGSP

approach in medical applications to recognize of illness patterns (Ameljańczyk,

2010a; 2010b). However indirect association and link analysis still faces many

challenging problems, such as information overload, high search complexity, and

heavy reliance on domain knowledge. In the papers (Antkiewicz et al., 2009a;

Kasprzyk, 2008; Tarapata & Kasprzyk, 2010e) have been shown why and how the

Complex Networks with the Scale Free and Small World feature can help optimize the

topology of communication networks. The first term – Scale Free feature – is a good

protection against random attacks (it is hard to hit a central node). The second term

– Small World feature – can dramatically affect communication among network

nodes. Thus both concepts and underlying theories are highly pertaining to the

presenting idea subject and objectives.

6.3.2. Specific Paths Planning Models

Specific paths planning models applied to crisis management systems, paths

planning for transport of hazardous materials have been described in other works

of the author (Tarapata, 1999c; 2000e; 2006b; 2008f; Tarapata & Daleki, 2008g;

Tarapata et al., 2009b; 2009d; Tarapata & Mierzejewski, 2010f).

One of the most important models being used for paths planning in many

applications (e.g. in crisis management systems) are time-dependent networks (TDN)

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

203

(Brodal & Jacob, 2004; Cooke & Halsey, 1996; Dean, 2004; Kaufman et al., 1993;

Orda & Rom, 1990; 1991; 1996; Sherali et al., 1998; Tarapata, 1999c; 2000e; 2008f;

Wellman et al., 1995; Wu et al., 2005). TDN is the network in which at least one

function (described on the arcs and/or on the nodes) depends on time. For

example, in a road traffic network travel time between two crossroads i and k

(nodes of the network) depend on the starting time in the i-th crossroad. This time

depends on: traffic lights configuration, traffic jams, current road load (different

values in peak hours and outside peak hours), etc. Let us note that network So(t)

defined in chapter 2.3 is time-dependent, too.

In generality, a time-dependent network S(t) can be defined as follows:

() , , ()S t G D t= 〈 ∅ 〉 (6.1)

where: (),G GG V A= – Berge's graph (sometimes, we define G(t) instead G for

dynamically changed structure of the network), GV – set of G nodes (e.g.

crossroads), G G GA V V⊂ × – set of G arcs (links) (e.g. road parts between crossroads),

= =, G GA A V V , () (){ }() : ,ik GD t d t i k A= ∈ – set of delay functions, ()ikd t – delay

function between nodes i and k,
(),

:
G

ik
i k A

d T T
∈

∀ → , T – set of moments, T=[0,∞). The

function ()ikd t describes the time value, which is needed to travel between nodes

i and k taking into account that the starting moment from node i is equal to t.

We define two types of link (arc) models (Orda & Rom, 1990):

• frozen link model – time and cost of travel by a link is constant, i.e. when we start

from i to k in the moment of 0t , we need exactly a time of 0()ikd t and we can

achieve the k node in the moment 1 0 0();ikt t d t= +

• elastic link model – time cost of travel by a link is changeable, i.e. when we start

from i to k in the moment of 0t we will achieve the k node in such a first

moment of 1 0t t≥ , that the following formula is fulfilled: 1 0 1()ikt t d t− ≥ .

Additionally, two different types of link models are considered (Orda & Rom,

1990):

• FIFO link model – for arc (),i k the following formula is satisfied:

1 0
1 1 0 0() ()ik ik

t t
t d t t d t

>

∀ + ≥ +

(6.2)

• non-FIFO link model – for arc (),i k the following formula is satisfied (see

Fig. 6.16):

1 0

1 1 0 0() ()ik ik
t t

t d t t d t
>

∃ + < +

(6.3)

It is important to note, that the elastic link is always a FIFO link, but the frozen link

cannot be a FIFO link. If all arcs of S(t) are FIFO links, then network S(t) is a FIFO

6. Selected Applications in Real Systems

204

network. Otherwise we have a non-FIFO network. Most often in practice we have

FIFO networks. In non-FIFO networks we can start later and achieve the destination

node earlier than usually (see Fig. 6.16).

From the non-FIFO property result three different politics of travel across the

network (Orda & Rom, 1990; 1991):

• unrestricted waiting – unrestricted waiting is permitted in all nodes of the

network (like in the public transportation network: e.g. bus-stops can be

a "depository" where a traveller can wait for a good bus);

• forbidden waiting – waiting is prohibited in all nodes of the network;

• source waiting – waiting is prohibited in all nodes of the network excluding the

source node.

For the case in which the waiting is permitted, the function Dik(t) describing the

travel time from node i to node k with an optimal waiting time in node i is defined

as follows (see Fig. 6.16):

() { }

0
min ()ik ikD t d t

τ

τ τ

≥

= + +

(6.4)

Fig. 6.16. Graph of the function dik(t) and related to this the function Dik(t) (see (6.4)). Function dik(t)
describes the non-FIFO arc, because, for example, for t2>t0: 2 2 0 0() () (4 2 1 9, 5)ik ikt d t t d t+ < + + < +

 In the paper (Tarapata, 2006a) a routing problem in computer networks

(similar to path planning in road networks) with a non-FIFO model of the network

as well as permitted and prohibited waiting in nodes (two different cases) has been

considered. The modified Dijkstra's algorithm with the arc function dik(t) (or in the

second case Dik(t)) based on the approach presented in (Orda & Rom, 1990) has

been used. Functions dik(t) or Dik(t) have forms, which allow accommodating to the

predicted network load (capacity) by using the network load prediction model

with piecewise linear function based on historical load (see details in (Tarapata,

2006a)). Computational complexity of the algorithm is the same as the Dijkstra's

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

205

(with the assumption that we have the dik(t) function) that is (log)O A V . Practical

examples of using the method in transportation threat prediction, identification

and countering have been considered in details in (Tarapata, 2006c; 2007c; Tarapata

et al., 2009b; 2009d; Tarapata & Mierzejewski, 2010f).

Another interesting traffic model, which can be used to model transportation

threats (e.g. transport of hazardous materials) and borrowed from car navigation

systems is the simplest path model (Duckham & Kulik, 2003; Mark, 1986). The

simplest path algorithm does not use distance or any other metric information. The

algorithm computes the simplest paths using only a measure of intersection

(navigation instruction) complexity proposed in the work (Mark, 1986). Intersection

complexity is classified into frames, each frame having several slots for different

elements of an intersection. A generic turn intersection is modelled as

a frame containing a total of 9 slots. Each slot covers information on whether to

turn left or right (3 slots), how to recognize the moment to turn (2 slots), how to

recognize if the navigator has gone too far (1 slot), and a summary information

providing an overview of the turn (3 slots). We can note that the greater value of

the measure the more complicated the description of the intersection; hence the

simplest path is such that the total value of the intersection complexity measure for

all nodes belonging to a path is minimal among other paths. This measure can be

treated as a kind of penalty for intersection crossing. In context of transportation

threats this measure may describe a manoeuvre risk on the intersection. In

particular, if we plan a transport of hazardous materials then one of the

minimization criteria may be the total manoeuvre risks on a path. Therefore, in this

case we may find the simplest path for which the total manoeuvre risk is minimal.

Authors of the paper (Duckham & Kulik, 2003) have proposed some modifications

of the approach presented by Mark. In the paper (Tarapata et al., 2009d) it has been

shown how to use the idea of simplest paths to plan hazardous materials

transportation.

One of the methods to find the simplest path is the definition of transformation µ

from graph G=(V,E) to graph G’=(E’,ε). The set of nodes E’ in G’ is created from the

set of arcs E in G where direction of arcs are ignored (i.e. (vi,vj)=(vj,vi) in E’), but

() ε∈1 2 1 2(,),(,)u u v v , if both v1 and v2 are achievable from u1 and u2 in G (see Fig.

6.17). Arc cost function c will have an interpretation of the intersection complexity

measure. To find the simplest path from v in G we must find the shortest path from

any node of G’, which contains v, using the arc function c.

The presented algorithm can be considered in two stages: (1) transformation from

G to G’ and (2) finding the shortest paths from the source node to the destination

using one of the shortest paths algorithms, e.g. the Dijkstra's algorithm.

Complexity of this algorithm is equal ()' log 'O mn m n+ , where n, n' – number of

nodes in G and G', m, m' – number of arcs in G and G', respectively.

6. Selected Applications in Real Systems

206

Fig. 6.17. Transformation µ of G in G’ (Duckham & Kulik, 2003)

To model the problem of hazardous (e.g. chemical) materials transportation

the disjoint path planning models are also used to minimize risk of a potential

accident and chemical threats. Then, we can use algorithms presented in chapter

3.4 to solve the problem. The other important problems related to hazardous

materials transportation and algorithms to solve them are presented in the works

(Berman et al., 2007; Bianco et al., 2009; Carotenuto et al., 2007a; 2007b; Chen et al.,

2008; Cox, 1984; Erkut et al., 2003; Wijeratne et al., 1993).

Presented models and algorithms can be also used in selected problems for

modelling and optimization of transportation systems (Ambroziak, 1998; Jacyna,

2009).

Summary and Conclusions

In the book selected models and algorithms related to decision support and

simulation of complex processes in knowledge-based systems for defence and

transport applications have been presented. Integration of these models and

algorithms with computer tools causes that decision making in complex situations

may be easier, faster and more effective than without a computer.

Verification of the presented in chapter 1.2 research theses has been done.

Thesis T1 has been verifying across the whole book, especially in chapter 6 where

applications and usefulness of presented models and algorithms in

knowledge-based decision support and simulation systems have been described.

All presented models and algorithms have taken information from two knowledge

bases (KB): operational-tactical KB and terrain KB. The first KB has been used to

collect knowledge used to express the character of a digital battlefield during

automation of military decision-making, such as: military rules, decision situation

patterns and recognition rules, course of action (CoA) patterns, etc. The second KB

(terrain KB) collects pre-processed information from the terrain database. For

example, in chapter 2.3 we have presented a network model of the terrain (with

rule-based functions described on the network's nodes and arcs) in the Zlocien

simulation system, which is based on pre-processed information from the terrain

database. In chapters 5.2−5.3 we have used operational-tactical KB to identify

decision situations and automatization of the march process. Thesis T2 has been

verified especially in chapter 5. For example, by using software decision automata

on the battalion level, which replace commanders of this level in the Zlocien

simulation system or the Guru decision support system, we save a lot of time and

cost, and decrease the number of military trainees in order to conduct Computer

Assisted Exercises (CAXes). Thesis T3 has been verified especially in chapters 3,

4 and 6.1. The presented algorithms have turned out to be effective and useful in

practical applications.

One of the most important features of simulation and decision models is their

adequacy. The good simulation model should represent a real system as accurately

as possible. It should include some internal mechanisms, which give possibilities to

elastically modify values of the model’s parameters for system model tuning. As it

has been written, battlefield processes are very complex and relatively poorly

recognized, because of a small set of results of real conflicts. For such processes it is

particularly justified using parameterized simulation models to calibrate (tune) it

Summary and Conclusions

208

(Hofmann, 2005). As examples of such simulated battlefield processes we can

consider target searching, firing and movement (Antkiewicz et al., 2006): for this

example, models and algorithms have been calibrated in the Zlocien system during

the process of putting this system into practice with the participation of target

users and military experts. The problem of calibrating models and methods is

especially essential in knowledge-based systems. In KB systems the knowledge

should be still acquired to learn the system. But acquisition of new knowledge may

cause that algorithms, which based on this knowledge should be calibrated

(learned) with new data. However, taking into account that the calibration process

(learning in KB systems) has an influence on the model adequacy, it should be

done very carefully.

To better use the knowledge, different ways of its representation are needed.

In recent years, in order to increase possibilities of knowledge use, the semantic

networks and ontologies were developed. Semantic networks give one of the most

important advantages – scalability and flexibility of knowledge representation.

They extend relational and object models. Search mechanisms are able to provide

clustered data based on semantics and provide even more complex operations

such as merging information from all relevant documents, removing redundancy,

and summarizing where appropriate. Ontology is used as a tool for describing and

representing selected knowledge branches that is medicine, finances, military etc.

It deals with questions concerning what entities exist or can be said to exist, and

how such entities can be grouped, related within a hierarchy, and subdivided

according to similarities and differences. The use of semantic metadata and

ontologies are also crucial for integrating information from heterogeneous sources,

whether within one organisation or across organisations. As it has been written in

chapter 1, the information sources are typically widely distributed and subject to

continuous change. In such a case, in order to improve situational awareness, data

fusion and integration should be done (Smart et al., 2005). Some applications of

these technologies and methods have been presented in selected papers of the

research team, which the author of this book is a member: (Antkiewicz et al., 2008a;

2008b; 2010a; 2010b; 2010c; 2010d; Chmielewski, 2008a; Chmielewski & Kasprzyk,

2008b; Chmielewski & Gałka, 2010a; Chmielewski & Nogalski, 2010b; Chmielewski

et al., 2010c; Koszela & Chmielewski, 2008; Najgebauer et al., 2004c; 2007a; 2008d;

Tarapata et al., 2010d; 2010h).

Selected algorithms presented in the book use approximation techniques: in

this case it seems to be essential to provide necessary and sufficient conditions for

obtaining optimal solutions and estimate theoretical approximation coefficient for

them. Moreover, it seems to be essential to examine the sensitivity of the changing

values of different parameters of these algorithms (e.g. in the SGDP algorithm).

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

209

Finally, in the author's opinion the best verification of the presented models

and algorithms is their practical use in real systems. The majority of them have

been used in the following computer decision support and/or simulation systems:

Zlocien, Guru, MSCombat, CAVaRS. That does not mean these models and

algorithms cannot be improved. They should still be developed, calibrated and

verified with domain experts. However, these practical applications can constitute

an excellent field to conduct further works and research related to the problems

being described.

Bibliography

Aggarwal, A., Kleinberg, J., Williamson, D. (2000): Node-Disjoint Paths on the Mesh and

a New Trade-Off in VLSI Layout, SIAM Journal on Computing, vol. 29(4),

pp. 1321-1333.

Ahuja R.K., Magnanti T.L., Orlin J.B. (1993): Network Flows: Theory, Algorithms and

Applications, Prentice Hall, Englewood Cliffs.

Ahuja R.K., Mehlhorn K., Orlin J.B., Tarjan R.E. (1988): Faster Algorithms for the Shortest

Path Problem, Technical Report 193, MIT Operations Research Center.

Almohamad H., Duffuaa S. (1993): A Linear Programming Approach for the Weighted

Graph Matching Problem, IEEE Trans. Pattern Anal. Mach. Intelligence, vol. 15(5),

pp. 522–525.

Ambroziak T. (1998): Modelowanie procesów technologicznych w transporcie, Oficyna

Wydawnicza Politechniki Warszawskiej, Warszawa.

Ameljańczyk A. (1984): Optymalizacja wielokryterialna w problemach zarządzania

i sterowania, Ossolineum, Kraków.

Ameljańczyk A. (2010a): Wielokryterialne mechanizmy wspomagania podejmowania

decyzji klinicznych w modelu repozytorium w oparciu o wzorce, Biuletyn Instytutu

Systemów Informatycznych, No. 5, pp. 1-6.

Ameljańczyk A. (2010b): Model informatycznego modułu wspomagania decyzyjnego

ustalania wstępnej diagnozy medycznej, Biuletyn Instytutu Systemów

Informatycznych, No. 5, pp. 7-12.

Andersen, R., Chung, F., Sen, A., Xue , G. (2004): On Disjoint Path Pairs with Wavelength

Continuity Constraint in WDM Networks, Proceedings of the IEEE Infocom’2004,

Hong Kong (China), March 7-11, pp. 524-535.

Antkiewicz R., Manikowski A., Tarapata Z. (2000): Analiza aktualnych i identyfikacja

przyszłych wojskowych zastosowań badań operacyjnych, Sprawozdanie końcowe

z PBW 907/99, Wydział Cybernetyki, Wojskowa Akademia Techniczna, Warszawa.

Antkiewicz R., Najgebauer A., Tarapata Z. (2003): The Decision Automata for Command

and Control Simulation on the Tactical Level, Proceedings of The 5th NATO Regional

Conference on Military Communication and Information Systems, October 7-10, Zegrze

(Poland), (CD publication).

Antkiewicz R., Najgebauer A., Rulka J., Tarapata Z. (2004a): Koncepcje

i implementacje automatu decyzyjnego w systemie symulacyjnego wspomagania

szkolenia operacyjnego, Materiały XII Konferencji Naukowej „Automatyzacja

Dowodzenia”, 2-4 czerwca, Gdynia-Jurata, (publikacja na CD).

Antkiewicz R., Najgebauer A., Tarapata Z. (2004b): Automat decyzyjny dla potrzeb

symulacji dowodzenia na szczeblu taktycznym, Materiały Konferencyjne z X

Warsztatów PTSK, Kraków, ISBN 83-7242-318-0, pp. 9-16.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

211

Antkiewicz R., Najgebauer A., Rulka J., Tarapata Z. (2006): Calibration of Simulation

Models of Selected Battlefield Processes, Proceedings of the 1st Military

Communication and Information Systems Conference, ISBN 83-920120-1-1, 18-19

września, Gdynia (Poland).

Antkiewicz R., Chmielewski M., Kasprzyk R., Koszela J., Kulas W., Najgebauer A.,

Pierzchała D., Rulka J., Tarapata Z., Wantoch-Rekowski R. (2008a): Systemy

wspomagania zarządzania kryzysowego, w: Kasprzyk J., Najgebauer A.,

Sienkiewicz P. (red), Badania operacyjne i systemowe a zagadnienia społeczeństwa

informacyjnego, bezpieczeństwa i walki, ISBN 83-894-7518-9, PAN IBS, Warszawa,

pp. 123-136.

Antkiewicz R., Chmielewski M., Kasprzyk R., Kulas W., Najgebauer A., Pierzchała D.,

Rulka J., Tarapata Z. (2008b): Metody predykcji zagrożenia atakiem

terrorystycznym, w: Kasprzyk J., Najgebauer A., Sienkiewicz P. (red), Badania

operacyjne i systemowe a zagadnienia społeczeństwa informacyjnego, bezpieczeństwa

 i walki, ISBN 83-894-7518-9, PAN IBS, Warszawa, pp. 147-166.

Antkiewicz R., Gąsecki A., Najgebauer A., Pierzchała D., Tarapata Z. (2008c): Computer

Support for Joint Operation Planning Processes, Proceedings of the Military

Communications and Information Systems Conference MCC'2008, ISBN 83-920120-5-4,

September 23-24, Cracow, Poland.

Antkiewicz R., Kulas W., Najgebauer A., Pierzchała D., Rulka J., Tarapata Z.,

Wantoch-Rekowski R. (2008d): Modelling and Simulation of C2 Processes Based

on Cases in the Operational Simulation System for CAXes, Biuletyn Wojskowej

Akademii Technicznej, 4(652), vol. LVII, pp. 9-24.

Antkiewicz R., Kulas W., Najgebauer A., Pierzchała D., Rulka J., Tarapata Z.,

Wantoch-Rekowski R. (2008e): Some Aspects of Designing and Using Deterministic

and Stochastic Simulators for Military Trainings and CAX'es, Proceedings of the

Military Communications and Information Systems Conference MCC’2008, ISBN 83-

-920120-5-4, September 23-24, Cracow, Poland.

Antkiewicz R., Kasprzyk R., Najgebauer A., Tarapata Z. (2009a): The Concept of C4IS

Topology Optimization Using Complex Network, Proceedings of the Military

Communications and Information Systems Conference MCC’2009, ISBN 978-80-7231-

-678-6, September 29-30, Prague, Czech Republic.

Antkiewicz R., Kulas W., Najgebauer A., Pierzchała D., Rulka J., Tarapata Z.,

Wantoch-Rekowski R. (2009b): Wybrane problemy projektowania i użytkowania

symulatorów walki, Materiały konferencyjne XV Warsztatów Naukowych PTSK,

Zakopane, 25-27 września, Warszawa , pp. 7-18.

Antkiewicz R., Najgebauer A., Pierzchała D., Tarapata Z. (2009c): Systemy wspomagania

dowodzenia w procesie planowania działań operacyjnych: problemy

modelowania, projektowania i integracji, Biuletyn Instytutu Systemów

Informatycznych, nr 3 (1/2009), ISBN 1508-4183, pp. 1-13.

Antkiewicz R., Najgebauer A., Tarapata Z., Rulka J. (2009d): Ocena rzeczywistej realizacji

przyjętego wariantu działania, Sprawozdanie z realizacji zadania badawczego nr 15203:

Koncepcja opartego na zasobach wiedzy systemu wspomagania procesu podejmowania

decyzji w operacji sieciocentrycznej. Podzadanie 7, Program Badawczy Zamawiany

Bibliography

212

Nr PBZ–MNiSW–DBO–02/I/2007, Zaawansowane metody i techniki tworzenia

świadomości sytuacyjnej w działaniach sieciocentrycznych, WIŁ-WAT-PIT-CTM-

-ABG, Warszawa.

Antkiewicz R., Chmielewski M., Kasprzyk R., Koszela J., Kręcikij J., Kulas W., Najgebauer

A., Pierzchała D., Rulka J., Tarapata Z., Tarnawski T., Wantoch-Rekowski R.

(2010a): Modelowanie przestrzeni walki, w: Amanowicz M. (red.) Zaawansowane

metody i techniki tworzenia świadomości sytuacyjnej w działaniach sieciocentrycznych,

Wydawnictwo PTM, Warszawa, pp. 360-382.

Antkiewicz R., Chmielewski M., Kasprzyk R., Koszela J., Kręcikij J., Kulas W., Najgebauer

A., Pierzchała D., Rulka J., Tarapata Z., Tarnawski T., Wantoch-Rekowski R.

(2010b): System wspomagania dowodzenia oparty na mechanizmach usług

rozproszonych, w: Amanowicz M. (red.) Zaawansowane metody i techniki tworzenia

świadomości sytuacyjnej w działaniach sieciocentrycznych, Wydawnictwo PTM,

Warszawa, pp. 412-435.

Antkiewicz R., Chmielewski M., Kasprzyk R., Koszela J., Kręcikij J., Kulas W., Najgebauer

A., Pierzchała D., Rulka J., Tarapata Z., Tarnawski T., Wantoch-Rekowski R.

(2010c): Weryfikacja mechanizmów wspomagania procesu dowodzenia,

w: Amanowicz M. (red.) Zaawansowane metody i techniki tworzenia świadomości

sytuacyjnej w działaniach sieciocentrycznych, Wydawnictwo PTM, Warszawa,

pp. 436-463.

Antkiewicz R., Chmielewski M., Kasprzyk R., Koszela J., Kręcikij J., Kulas W., Najgebauer

A., Pierzchała D., Rulka J., Tarapata Z., Tarnawski T., Wantoch-Rekowski R.

(2010d): Wspomaganie podejmowania decyzji w operacji sieciocentrycznej

w oparciu o zasoby wiedzy, w: Amanowicz M. (red.) Zaawansowane metody

i techniki tworzenia świadomości sytuacyjnej w działaniach sieciocentrycznych,

Wydawnictwo PTM, Warszawa, pp. 383-411.

Antkiewicz R., Gąsecki A., Najgebauer A., Pierzchała D., Tarapata Z. (2010e): Stochastic

PERT and CAST Logic Approach for Computer Support of Complex Operation

Planning, ASMTA’2010, Lecture Notes in Computer Science, vol. 6148, Springer,

Heidelberg, pp. 159-173.

Antkiewicz R., Kulas W., Najgebauer A., Pierzchała D., Rulka J., Tarapata Z.,

Wantoch-Rekowski R. (2010f): Selected Problems of Designing and Using

Deterministic and Stochastic Simulators for Military Trainings, 43rd Hawaii

International Conference on System Sciences, IEEE Computer Society, ISBN 978-0-

-7695-3869-3, January 5-8, Koloa, Kauai, Hawaii (USA).

Antkiewicz R., Kulas W., Najgebauer A., Pierzchała D., Rulka J., Tarapata Z.,

Wantoch-Rekowski R. (2011a): Fast CoA Verification and Recommendation using

Tactical Level Land Battle Deterministic Simulator, Proceedings of the 13th

International Conference on Computer Modelling and Simulation UkSim'2011, IEEE

Computer Society, Cambridge (UK), March 30–April 1, pp. 137-144.

Antkiewicz R., Najgebauer A., Rulka J., Tarapata Z., Wantoch-Rekowski R. (2011b):

Knowledge-Based Pattern Recognition Method and Tool to Support Mission

Planning and Simulation, ICCCI'2011, Part I, Lecture Notes in Computer Science,

vol. 6922, Springer, Heidelberg, pp.478-487.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

213

Atallah M., Chen D., Daescu O. (1997): Efficient Parallel Algorithms for Planar st-Graphs,

Lecture Notes in Computer Science, vol. 1350, Springer, Heidelberg, pp. 223-232.

Barabási A.L., Réka A. (2002): Statistical Mechanics of Complex Networks, Review of

Modern Physics, vol. 74, pp. 47-97.

Bartosiak C., Kasprzyk R., Tarapata Z. (2011): An Application of Graphs and Networks

Similarity Methods to Networks Analyzing, Biuletyn Instytutu Systemów

Informatycznych, No. 7 (in press).

Beautement, P., Allsopp, D., Greaves, M., Goldsmith, S., Spires, S., Thompson, S., Janicke,

H. (2006): Autonomous Agents and Multi-agent Systems (AAMAS) for the Military

- Issues and Challenges, Lecture Notes in Computer Science, vol. 3890, Springer,

Heidelberg, pp. 1-13.

Behnke S. (2004): Local Multiresolution Path Planning, In B. Browning, D. Polani, A.

Bonarini, and K. Yoshida (editors): RoboCup: Robot Soccer World Cup VII, Lecture

Notes in Computer Science, vol. 3020, Springer, Heidelberg, pp. 332-343.

Bellman R. (1958): On a Routing Problem, Quarterly of Applied Mathematics, vol. 16,

pp. 87-90.

Benton J.R., Iyengar S.S., Deng W., Brener N., Subrahmanian V.S. (1995): Tactical Route

Planning: New Algorithms for Decomposing the Map, Proceedings of the IEEE

International Conference on Tools for AI, November 6-8, Herndon, pp. 268-277.

Berman O., Kara B. Y., Verter V. (2007): Designing Emergency Response Networks for

Hazardous Materials Transportation, Computers & Operations Research, vol. 34,

pp. 1374–1388.

Bernstein D., Kelly S. (1997): Solving a Best Path Problem When the Value of Time

Function is Nonlinear, Annual Meeting of the Transportation Research Board, preprint

980976, Princeton University.

Bhandari R. (1999): Survivable Networks. Algorithms for Divers Routing, Kluver Academic

Publishers, Boston/Dordrecht/London.

Bianco L., Caramia M., Giordani S. (2009): A Bilevel Flow Model for Hazmat

Transportation Network Design, Transportation Research, vol. C 17, pp. 175-196.

Blondel V., Gajardo A., Heymans M., Senellart P., Van Dooren P. (2004):

A Measure Of Similarity Between Graph Vertices: Applications To Synonym

Extraction And Web Searching, SIAM Review, vol. 46(4), pp. 647–666.

Brodal G., Jacob R. (2004): Time-Dependent Networks as Models to Achieve Fast Exact

Time-Table Queries, Electronic Notes in Theoretical Computer Science, vol. 92, pp. 3-15.

Brumbaugh-Smith J., Shier D. (1989): An Empirical Investigation of Some Bicriterion

Shortest Path Algorithms, European Journal of Operational Research, vol. 43(2),

pp. 216-224.

Buchli J. (edt.) (2006): Mobile Robotics Moving Intelligence, Pro Literatur Verlag, ISBN

3-86611-284-X, Germany.

Bunke H. (1997): On a Relation Between Graph Edit Distance and Maximum Common

Subgraph, Pattern Recognition Letters, vol. 18, pp. 689–694.

Bunke H. (2000): Graph Matching: Theoretical Foundations, Algorithms, and Applications,

in Proceedings Vision Interface , Montreal, pp. 82-88.

Bibliography

214

Busacker R.G., Gowen P.J. (1961): A Procedure for Determining a Family of

Minimum-Cost Flow Patterns, Operations Research Office Technical Report 15, John

Hopkins University, Baltimore.

Cai X., Kloks T., Wong C.K. (1997): Time-Varying Shortest Path Problems with

Constraints, Networks, vol. 29, pp. 141-149.

Campbell C., Hull R., Root E., Jackson L. (1995): Route Planning in CCTT, in Proceedings of

the 5th Conference on Computer Generated Forces and Behavioural Representation,

Technical Report, Institute for Simulation and Training, pp. 233-244.

Caramia M., Guerriero F. (2009): A Heuristic Approach to Long-Haul Freight

Transportation with Multiple Objective Functions, Omega, vol. 37, pp. 600-614.

Carotenuto P., Giordani S., Ricciardelli S., Rismondo S. (2007a): A Tabu Search Approach

for Scheduling Hazmat Shipments, Computers & Operations Research, vol. 34,

pp. 1328–1350.

Carotenuto P., Giordani S., Ricciardelli S. (2007b): Finding Minimum and Equitable Risk

Routes for Hazmat Shipments, Computers & Operations Research, vol. 34,

pp. 1304–1327.

Carraway R.L., Morin T.L., Moskovitz H. (1990): Generalized Dynamic Programming for

Multicriteria Optimization, European Journal of Operational Research, vol. 44,

pp. 95-104.

Cassandras C.G., Panayiotou C.G., Diehl G., Gong W-B., Liu Z., Zou C. (2000): Clustering

Methods for Multi-Resolution Simulation Modeling, Proceedings of the Conference on

Enabling Technology for Simulation Science, The International Society for Optical

Engineering, April 25-27, Orlando (USA), pp. 37-48.

CBS (2001): Corps Battle Simulation (CBS), Version 1.6.0, COBRA Users Guide, U.S. Army

Simulation, Training, and Instrumentation Command, Orlando, Florida.

Ceranowicz A. (1994): Modular Semi-Automated Forces, Proceedings of the Winter

Simulation Conference, Orlando, Florida.

Champin P., Solnon Ch. (2003): Measuring The Similarity of Labeled Graphs, Proc. 5th

International Conference on Case-Based Reasoning (ICCBR'2003), Lecture Notes in

Artificial Intelligence, vol. 2689, Springer, Heidelberg, pp. 80–95.

Chen Y.-W., Wang Ch.-H., Lin S.-J. (2008): A Multi-Objective Geographic Information

System for Route Selection of Nuclear Waste Transport, Omega, vol. 36, pp. 363-372.

Cherkassky B. V., Goldberg A. V., Radzik T. (1996): Shortest Paths Algorithms: Theory and

Experimental Evaluation, Mathematical Programming, vol. 73, pp. 129-174.

Cheung Ch., Fung S., Kwok S., Lee W., Tan B.: (2007): A Study of Knowledge-Based

Simulation for Enterprise Resources Planning, Journal of Information & Knowledge

Management, vol. 6(4), pp. 241-249.

Chmielewski M. (2008a): Data Fusion Based on Ontology Model for Common Operational

Picture Using OpenMap and Jena Semantic Framework, Proceedings of the Military

Communications and Information Systems Conference MCC’2008, ISBN 83-920120-5-4,

September 23-24, Cracow, Poland.

Chmielewski M., Kasprzyk R. (2008b): Usage and Characteristics of Ontology Models in

Network Enabled Capability Operations, Proceedings of the Military Communications

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

215

and Information Systems Conference MCC’2008, ISBN 83-920120-5-4, September 23-24,

Cracow, Poland.

Chmielewski M., Galka A. (2010a): Semantic Battlespace Data Mapping Using Tactical

Symbology, in: Advances in Intelligent Information and Database Systems. Studies in

Computational Intelligence, N.T. Nguyen et al. (eds.), Springer, Heidelberg, vol. 283,

pp. 157-168.

Chmielewski M., Nogalski D. (2010b): Semantic Web Service Discovery and Information

Fusion Using OWL-S and SPARQL Formal Specifications over NATO JC3IEDM

and TIDE Services, in: Concepts and Implementations for Innovative Military

Communications and Information Technologies, M. Amanowicz (edt.), WAT, Warsaw,

pp. 165-174.

Chmielewski M., Wilkos M., Wilkos K. (2010c): Building Multiagent for Military Decision

Support Tools with Semantic Services, KES-AMSTA'2010, Lecture Notes in Artificial

Intelligence, vol. 6070, Springer, Heidelberg, pp. 173-182.

Chou Y., Romeijn H. E., Smith R. L. (1998): Approximating Shortest Paths in Large-scale

Networks with an Application to Intelligent Transportation Systems, INFORMS

Journal on Computing, vol. 10(2), pp. 163-179.

Cidon I., Rom R., Shavitt Y. (1997): Multi-Path Routing Combined with Resource

Reservation, Proceedings of the 16th Annual Joint Conference of the IEEE Computer and

Communications Societies INFOCOM '97, Kobe (Japan), pp. 92-100.

Cidon I., Rom R., Shavitt Y. (1999): Analysis of Multi-Path Routing, IEEE/ACM

Transactions on Networking, vol. 7(6), pp. 885-896.

Cil, B., Mala, M. (2010): A Multi-Agent Architecture for Modelling and Simulation of Small

Military Unit Combat in Asymmetric Warfare, Expert Systems with Applications,

vol. 37(2), pp. 1331-1343.

Climaco J., Martins E. (1982): A Bicriterion Shortest Path Algorithm, European Journal of

Operational Research, vol.11, pp. 399-404.

Clímaco, J., Craveirinha, J., Pascoal, M. (2002): A Bicriterion Approach for Routing

Problems in Multimedia Networks, Networks, vol. 41(4), pp.206-220.

Cooke K., Halsey E. (1996): The Shortest Route Through a Network with Time-Dependent

Intermodal Transit Times, Journal Math. Anal. Appl., vol. 14, pp. 493-498.

Corea G.A., Kulkarni V. G. (1990): Minimum Cost Routing on Stochastic Networks,

Operations Research, vol. 38, pp. 527-536.

Corley H.W., Moon I.D. (1985): Shortest Paths in Networks with Vector Weights, Journal of

Optimization Theory and Applications, vol. 46(1), pp. 79-86.

Cormen T., Leiserson CH.E., Rivest R.L. (1994): Introduction to Algorithms, Massachusetts

Institute of Technology, Cambridge.

Cormican K., Morton D., Wood K. (1998): Stochastic Network Interdiction, Operations

Research, vol. 46, pp. 184-197.

Courtemanche A. J., Monday P. (1994): The Incorporation of Validated Combat Models

into ModSAF, Fourth Conference on Computer Generated Forces and Behavioral

Representation, University of Central Florida, Orlando.

Bibliography

216

Coutinho-Rodrigues J.M., Climaco J.C.N., Current J.R. (1999): An Intercative Biobjective

Shortest Path Approach: Searching for Unsupported Nondominated Solutions,

Computers and Operations Research, vol. 26(8), pp. 789-798.

Cox R.G. (1984): Routing of Hazardous Material, PhD thesis, School of Civil and

Environmental Engineering, Cornell University, Ithaca , NY.

Crauser A., Mehlhorn K., Meyer U., Sanders P. (1998): A Parallelization of Dijkstra’s

Shortest Path Algorithm, Lecture Notes in Computer Science, vol. 1450 , pp. 722-731.

Current J.R., ReVelle C.S., Cohon J.L. (1990): An Interactive Approach to Identify the Best

Compromise Solution for Two Objective Shortest Path Problems, Computers and

Operations Research, vol. 17(2), pp. 187-198.

Davis P.K., Bigelow J.H., McEver J. (2000): Informing and Calibrating a Multiresolution

Exploratory Analysis Model with High Resolution Simulation: the Interdiction

Problem as a Case History, Proceedings of the Winter Simulation Conference, Orlando

(FL, USA), pp. 316-325.

Dean B. (2004): Algorithms for Minimum-Cost Paths in Time-Dependent Networks with

Waiting Policies, Networks, vol. 44(1), pp. 41–46.

Dial R. (1979): A Model and Algorithm for Multicriteria Route-Mode Choice,

Transportation Research, vol. 13B, pp. 311-316.

Dijkstra E. (1959): A Note on Two Problems in Connection with Graphs, Numerische

Mathematik, vol. 1, pp. 269-271.

Djidjev H., Pantziou G., Zaroliagis C. (1995): On-Line and Dynamic Algorithms for

Shortest Path Problems, Lecture Notes in Computer Science, vol. 900, Springer,

Heidelberg, pp. 193-204.

Dockery J., Woodcock A.E.R. (1993): The Military Landscape, Mathematical Models of

Combat, Woodhead Publishing Ltd., Cambridge, England.

Dompke U. (2001): Computer Generated Forces - Background, Definition and Basic

Technologies, RTO-EN-017, SAS Lecture Series on “Simulation of and for Military

Decision Making”, Rome, Italy, October 15-16.

Duckham M., Kulik L. (2003): "Simplest" Paths: Automated Route Selection for Navigation,

in: W. Kuhn, M.F. Worboys, S. Timpf (Eds), Spatial Information Technology:

Foundations of Geographic Information Science, Lecture Notes in Computer Science,

vol. 2825, Springer, Heidelberg, pp. 182-199.

Duran E., Costaguta R. (2009): The Knowledge-Based Simulation, Proceedings of the 31st

Annual Simulation Symposium, Boston, Massachusetts, April 5.

Edmonds J., Karp R.M. (1972): Theoretical Improvement in Algorithmic Efficiency for

Network Flow Problems, J. ACM, vol. 19 , pp. 248-264.

Ehrgott M. (1997): Multiple Criteria Optimization - Classification and Methodology, Shaker

Verlag, Aachen.

Ehrgott M., Gandibleux X. (Eds) (2002): Multiple Criteria Optimization – State of the Art

Annotated Bibliographic Surveys, Kluwer Academic Publishers, Boston.

Engberg D., Cohon J., ReVelle C. (1983): Multiobjective Siting of a Natural Gas Pipeline,

Instrument Society of America, Proceedings of the 11th Annual Pittsburgh Conference

on Modeling and Simulation, Pittsburgh.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

217

Eppstein D. (1995): Finding Common Ancestors and Disjoint Paths in DAGs, Technical

Report 95-52, Department of Information and Computer Science, University of

California, Irvine.

Eppstein D. (1999): Finding the K Shortest Paths, SIAM Journal of Computing, vol. 28(2),

pp. 652-673.

Ergun F., Sinha R., Zhang L. (2002): An Improved FPTAS for Restricted Shortest Path,

Information Processing Letters, vol. 83, pp. 287-291.

Erkut E., Kara B.Y., Verter V. (2003): Accurate Calculation of Hazardous Materials

Transport Risks, Operations Research Letters, vol. 31, pp. 285-292.

Eschenauer H., Koski J., Osyczka A. (1990): Multicriteria Design Optimization, Springer

Verlag, Berlin-Heidelberg-New York.

Even S., Itai A., Shamir A. (1976): On the Complexity of Time-Table and Multicommodity

Flow Problems, SIAM Journal on Computing, vol. 5, pp. 691-703.

Farin D., With P., Effelsberg W. (2003): Recognition of User-Defined Video Object Models

using Weighted Graph Homomorphisms, Proc. Image and Video Communications and

Processing (IVCP'2003), Proc. SPIE 5022, Bhaskaran Vasudev, T. Russell Hsing,

Andrew G. Tescher, and Touradj Ebrahimi, ed., pp. 542–553.

Foster I. (1995): Designing and Building Parallel Programs, Addison-Wesley.

Frank H. (1969): Shortest Paths in Probabilistic Graphs, Operations Research, vol. 17,

pp. 583-599.

Fredman M.L., Tarjan R.E. (1987): Fibonacci Heaps and their Uses in Improved Network

Optimization Algorithms, Journal of the Association for Computing Machinery,

vol. 34, pp.596–615.

Fujimura, K. (1996): Path Planning with Multiple Objectives, IEEE Robotics and Automation

Magazine, vol. 3, pp. 33–38.

Gabow H.N., Tarjan R.E. (1989): Faster Scaling Algorithms for Network Problems, SIAM

Journal on Computing, No. 18, pp. 1013-1036.

Gabrel V., Vanderpooten D. (1996): Generation and Selection of Efficient Paths in

a Multiple Criteria Graph: The Case of Daily Planning The Shots Taken by

a Satellite with an Interactive Procedure, Technical Report 136, LAMSADE,

Universitae Paris Dauphine.

Garey M., Johnson D. (1979): Computers and Intractability: A Guide to the Theory of NP

Completeness, W.H.Freeman, San Francisco.

Gelenbe, E., Kaptan, V., Hussain, K. (2004): Simulating the Navigation and Control of

Autonomous Agents, Proceedings of the 7th International Conference on Information

Fusion, Stockholm, pp. 183-189.

Gilmore J., Semeco A. (1985): Terrain Navigation Through Knowledge-Based Route

Planning, Proceeding of the 9th international joint conference on Artificial intelligence

(IJCAI'85), vol. 2, pp. 1086-1088.

Godlewski P. (2010): Modelowanie i algorytmizacja procesów planowania i symulacji

przemieszczania z wykorzystaniem wielorozdzielczych modeli terenu, praca

magisterska pod kierunkiem Z.Tarapaty, Wojskowa Akademia Techniczna, Warszawa.

Bibliography

218

Golden B.L., Skiscim C.C. (1989): Solving K-Shortest and Constrained Shortest Path

Problems Efficiently, Network Optimization and Applications, vol. 20, Texas A&M

University, College Station.

Grama A., Gupta A., Karypis G., Kumar V. (2003): Introduction to Parallel Computing,

Addison-Wesley, ISBN 0-2016-4865-2.

Ground L., Kott A., Budd R. (2002): A Knowledge-Based Tool for Planning of Military

Operations: the Coalition Perspective, BBN Technologies, Pittsburgh.

Grzech A. (2002): Sterowanie ruchem w sieciach teleinformatycznych, Oficyna Wydawnicza

Politechniki Wrocławskiej, Wrocław.

Guo Y., Yang M., Cheng J. (2010): Knowledge-Inducing Global Path Planning for Robots in

Environment with Hybrid Terrain, International Journal of Advanced Robotic Systems,

vol. 7(3), pp. 239-248.

Guru (2005): Opracowanie projektu systemu eksperckiego z modelowym

oprogramowaniem bazowym ZNWD, Projekt wstępny "Zautomatyzowane narzędzia

wspomagania decyzji – system ekspercki pk. Guru", t. I. 6, Wydział Cybernetyki, WAT,

Warszawa.

Halder D.K., Majumber A. (1981): A Method for Selecting Optimum Number of Stations

For a Rapid Transit Line: An Application in Calcutta Tube Rail, in N.K. Jaiswal,

editor, Scientific Management of Transport Systems, pp. 97-108.

Han Y., Pan V., Reif J. (1997): Efficient Parallel Algorithms for Computing All Pair Shortest

Paths in Directed Graphs, Algorithmica, vol. 17 , pp. 399-415.

Hansen P. (1979): Bicriterion Path Problems, in: G. Fandel and T. Gal (eds.), Multiple

Criteria Decision Making Theory and Application, Lecture Notes in Economics and

Mathematical Systems, vol. 177, pp. 109-127, Springer, Heidelberg.

Hart P.E., Nilsson N.J., Raphael B. (1968): A Formal Basis for the Heuristic Determination

of Minimum Cost Paths, IEEE Trans. Syst. Scien. Cybern., vol. 4(2), pp. 100-107.

Hartley R. (1985): Vector Optimal Routing by Dynamic Programming, in P. Serahni, editor,

Mathematics of Multiobjective Optimization, vol. 289 of CISM International Centre for

Mechanical Sciences, Courses and Lectures, Springer Verlag, Wien, pp. 215-224.

Hassin R. (1992): Approximation Schemes for the Restricted Shortest Path Problem,

Mathematics of Operations Research, vol. 17, pp. 36-42.

Heal, G. N., Garnett I.K. (2001): Allied Deployment and Movement System (ADAMS)

Version 3.0 Tutorial, Technical note 669, NATO consultation, Command and Control

Agency, Hague (The Netherlands).

Heero K. (2006): Path Planning And Learning Trategies For Mobile Robots In Dynamic

Partially Unknown Environments, PhD Thesis, Faculty of Mathematics and

Computer Science, University of Tartu, Estonia.

Henig M.I. (1985): The Shortest Path Problem with Two Objective Functions, European

Journal of Operational Research, vol. 25, pp. 281-291.

Henig M.I. (1994): Efficient Interactive Methods for a Class of Multiattribute Shortest Path

Problems, Management Science, vol. 40(7), pp. 891-897.

Henninger A.E., Gonzalez A.J., Georgipoulos M., DeMara R.F. (2000): Modeling

Semi-Automated Forces with Neural Networks: Performance Improvement

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

219

through a Modular Approach, The Ninth Conference on Computer Generated Forces

and Behavioral Representation Proceedings, Orlando (FL, USA).

Hodal J., Dvorak J. (2008): Using Case-Based Reasoning for Mobile Robot Path Planning,

Engineering Mechanics, vol. 15(3), pp. 181-191.

Hofmann M. (2005): On the Complexity of Parameter Calibration in Simulation Models,

JDMS, The Society for Modeling and Simulation International, vol. 2(4),

pp. 217-226.

Hofmann H.W., Hofmann M. (2000): On the Development of Command, Control Modules

for Combat Simulation Models on Battalion down to Single Item Level, in:

Proceedings of the NATO/RTO Information Systems Technology Panel (IST) Symposium

"New Information Processing Techniques for Military Systems", NATO AC/329 (IST-

-017) TP/8, Istanbul, Turkey, October 9-11, pp. 85-96.

Holsapple C., Whinston A. (1996): Decision Support Systems: a Knowledge-Based

Approach, St. Paul: West Publishing, ISBN 0-324-03578-0.

Hu Y., Yang S., Xu L., Meng M. (2004): A Knowledge Based Genetic Algorithm for Path

Planning in Unstructured Mobile Robot Environments, Proceedings of the 2004 IEEE

International Conference on Robotics and Biomimetics, August 22-26, Shenyang, China,

pp. 767-772.

Huarng F., Pulat P.S., Shih L. (1996): A Computational Comparison of Some Bicriterion

Shortest Path Algorithms, Journal of the Chinese Institute of Industrial Engineers,

vol. 13(2), pp. 121-125.

Ibaraki T. (1973): Algorithms for Obtaining Shortest Paths Visiting Specified Nodes, SIAM

Review, vol. 15, No. 2, Part 1, pp. 309-317.

Ibaraki T., Katon N., Mine H. (1978): An O(Kn2) Algorithm for K Shortest Simple Paths in

an Undirected Graph with Nonnegative Arc Length, Trans. Inst. Electron. and

Comm. Eng. Jap., vol. 12, pp. 1199-1206.

Jacyna M. (2009): Wybrane zagadnienia modelowania systemów transportowych, Oficyna

Wydawnicza Politechniki Warszawskiej, Warszawa.

James J., Sayrs B., Benton J., Subrahmanian V.S. (1999): Uncertainty Management: Keeping

Battlespace Visualization Honest, Proceedings of the 3rd Annual Conference on

Advanced Telecommunications and Information Distribution Research Program (ATIRP),

February 1-5, University of Maryland, College Park, MD.

Jing X-J. (2008): Motion Planning, InTech Education and Publishing, ISBN 978-953-7619-01-5,

Vienna (Austria).

Joe L., Feldman P.M. (1998): Fundamental Research Policy for the Digital Battlefield,

Research Report DB-245-A, RAND Co., Santa Monica (USA).

Johnson D.B. (1977): Efficient Algorithm for Shortest Paths in Sparse Networks, Journal of

the ACM, vol. 24, pp. 1-13.

Jongh A., Gendreau M., Labbe M. (1999): Finding Disjoint Routes in Telecommunications

Networks with Two Technologies, Operations Research, vol. 47, pp. 81-92.

JTLS (1988): The Analyst Guide, Joint Theater Level Simulation (JTLS), Version 1.65,

Modern Aids to Planning Program (MAPP), Force Structure and Assessment

Directorate (J-8), Joint Staff, The Pentagon.

Bibliography

220

Kambhampati S., Davis L.S. (1986): Multiresolution Path Planning for Mobile Robots, IEEE

Journal of Robotics and Automation, vol. RA-2, No. 3 , pp. 135-145.

Karr C.R., Craft M.A., Cisneros J.E. (1995): Dynamic Obstacle Avoidance, Proceedings of the

Conference on Distributed Interactive Simulation Systems for Simulation and Training in

the Aerospace Environment, The International Society for Optical Engineering, April

19-20, Orlando (USA), pp. 195-219.

Kasprzyk R. (2005): Complex Networks in Countering Terrorism, Proceedings of the

International PHD Workshop OWD'2005, Conference Archives PTETiS, vol. 21, ISBN

83-922242-0-5, pp.95-100.

Kasprzyk R. (2008): Fault and Attack Resistance of Complex Networks, Proceedings of the

International PHD Workshop OWD'2008, Conference Archives PTETiS, vol. 25, ISBN

83-922242-0-5, pp.205-210.

Kaufman D. E., Smith R. L. (1993): Fastest Paths in Time-Dependent Networks for

Intelligent Vehicle Highway Systems Applications, IVHS Journal, vol.1(1), pp.1-11.

Kerbache L., Smith J. (2000): Multi-Objective Routing Within Large Scale Facilities Using

Open Finite Queueing Networks, European Journal of Operational Research, vol. 121,

pp. 105-123.

Kleinberg J. (1999): Authoritative Sources in Hyperlinked Environment, Journal of the ACM,

vol. 46(5), pp. 604–632.

Klupfel H., Schreckenberg M., Meyer-Konig T. (2005): Models for Crowd Movement and

Egress Simulation, in: Traffic and Granular Flow ’03, Springer, Heidelberg,

pp. 357-372.

Korf R.E. (1999): Artificial Intelligence Search Algorithms, in Algorithms Theory Computation

Handbook, Boca Raton, FL: CRC Press.

Kornell J. (1987): Reflections on Using Knowledge Based Systems for Military Simulation,

Simulation, vol. 48, pp. 144-148.

Korzan B. (1978): Elementy teorii grafów i sieci, Metody i zastosowania, WNT, Warszawa.

Korzan B. (1982): Metoda wyznaczania dróg kompromisowych w zawodnych sieciach

skierowanych, Biuletyn Wojskowej Akademii Technicznej, vol. 7, pp. 21-36.

Korzan B. (1983a): Metoda wyznaczania dróg niezdominowanych w zawodnych sieciach

skierowanych, Biuletyn Wojskowej Akademii Technicznej, vol. 11, pp. 21-33.

Korzan B. (1983b): Optymalizacja dróg w zawodnych sieciach skierowanych, Biuletyn

Wojskowej Akademii Technicznej, vol. 6, pp. 69-85.

Kostreva M.M. , Wiecek M.M. (1993): Time Dependency in Multiple Objective Dynamic

Programming, Journal of Mathematical Analysis and Applications, vol. 173(1),

pp. 289-307.

Koszela J., Chmielewski M. (2008): The Concept of C4I Systems Data Integration for

Planning Joint Military Operations Based on JC3 Standard, Proceedings of the

Military Communications and Information Systems Conference MCC’2008, ISBN 83-

-920120-5-4, September 23-24, Cracow, Poland.

Krebs V. (2002): Mapping Networks of Terrorist Cells, Connections, vol. 24(3), pp. 43-52.

Kreitzberg T., Barragy T., Nevin B. (1990): Tactical Movement Analyzer: a Battlefield

Mobility Tool, Proceedings of the 4th Join Tactical Fusion Symposium, Laurel,

pp. 363-383.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

221

Kriegel H.P., Schonauer S. (2003): Similarity Search in Structured Data, Proc. 5th Int. Conf.

on Data Warehousing and Knowledge Discovery (DaWaK'03), Prague, Czech Republic,

in: Lecture Notes in Computer Science, vol.2737, Springer, Heidelberg, pp.309–319.

Kuhl F., Weatherly D., Dahman J. (1999): Creating Computer Simulation Systems – An

Introduction to the High Level Architecture, PH PTR, ISBN 0-13-022511-8.

Kulas W., Pierzchała D., Tarapata Z., Tarnawski T. (2008): Finding Optimal Flight Path in

a Segmented Airspace, Proceedings of the Military Communications and Information

Systems Conference MCC’2008, ISBN 83-920120-5-4, September 23-24, Cracow,

Poland.

Kumar V., Grama A., Gupta A., Karypis G. (1994): Introduction to Parallel Programming –

Design and Analysis of Algorithms, Banjamin Cummings Publishing.

Lanthier M., Nussbaum D., Sack J. (2003): Parallel Implementation of Geometric Shortest

Path Algorithms, Parallel Computing, vol. 29(10), pp. 1445-1479.

LaValle S. (2006): Planning Algorithms, Cambridge University Press, Cambridge (UK).

Lee.J.J., Fishwick P.A. (1995): Simulation-Based Real-Time Decision Making for Route

Planning, Proceedings of Winter Simulation Conference, Orlando (FL, USA),

pp. 1087-1095.

Lee J.J. (1996): A Simulation-Based Approach for Decision Making and Route Planning,

PhD Thesis, University of Florida, August.

Leung J.Y-T. (edt.) (2004): Handbook of Scheduling: Algorithms, Models and Performance

Analysis, Chapman, Hall/CRC, Boca Raton-London-New York-Washington.

Li C.L., McCormick S.T., Simchi-Levi D. (1990): The Complexity of Finding Two Disjoint

Paths with Min-Max Objective Function, Discrete Applied Math, vol. 26, pp. 105-115.

Li C.L., McCormick S.T., Simchi-Levi D. (1992): Finding Disjoint Paths with Different

Path-Costs: Complexity and Algorithms, Networks, vol. 22, pp. 653-667.

Logan B. (1997a): Route Planning with Ordered Constraints, Proceedings of the 16th

Workshop of the UK Planning and Scheduling Special Interest Group, December,

Durham (UK), pp. 133-144.

Logan B., Sloman A. (1997b): Agent Route Planning in Complex Terrains, Technical Report

CSRP-97-30, University of Birmingham, School of Computer Science, Birmingham.

Longtin M., Megherbi D. (1995): Concealed Routes in ModSAF, in Proceedings of the 5th

Conference on Computer Generated Forces and Behavioural Representation, Orlando (FL,

USA), pp. 305-314.

Lorenz D.H., Raz D. (2001): A Simple Efficient Approximation Scheme for the Restricted

Shortest Path Problem, Operations Research Letters, vol. 28, pp. 213-219.

Loui R.P. (1983): Optimal Paths in Graphs with Stochastic or Multidimensional Weights,

Comm. Assoc. Comp. Mach., vol. 26, pp. 670-676.

Madni A.M., Ahlers R., Chu Y. (1987): Knowledge-Based Simulation: An Approach to

Intelligent Opponent Modeling for Training Tactical Decisionmaking, Proceedings of

the 9th Interservice/Industry Training Systems Conference, pp. 179-183, November

30-December 2, Washington, D.C.

Magillo P., Bertocci V. (1998): Managing Large Terrain Data Sets with a Multiresolution

Structure, INFORMS Journal on Computing, vol. 10(2), pp. 163-179.

Bibliography

222

Mark D. (1986): Automated Route Selection for Navigation, IEEE Aerospace and Electronic

Systems Magazine, vol. 1(9), pp. 2-5.

Martins E.Q.V., Climaco J.C.N. (1981): On the Determination of the Nondominated Paths

in a Multiobjective Network Problem, Methods of Operations Research, vol. 40,

pp. 255–258.

Martins E.Q.V. (1984): On a Multicriteria Shortest Path Problem, European Journal of

Operational Research, vol.16, pp. 236-245.

Martins E.Q.V., Santos J.L.E. (1999): The Labelling Algorithm for the Multiobjective

Shortest Path Problem, Internal Technical Report, TR 1999/005, CISUC, Universidade

de Coimbra, Coimbra (Portugal).

Melnik S., Garcia-Molina H., Rahm E. (2002): Similarity Flooding: A Versatile Graph

Matching Algorithm and its Application to Schema Matching, Proceedings of the 18th

International Conference on Data Engineering, San Jose, California, pp. 117–128.

Meyer U., Sanders P. (2001): Parallel Shortest Paths for Arbitrary Graphs, Lecture Notes in

Computer Science, vol. 1900, Springer, Heidelberg, pp. 461-470.

Mitchell J.S.B. (1999): Geometric Shortest Paths and Network Optimization, in J.R. Sack, J.

Urrutia: Handbook of Computational Geometry, Elsevier Science Publishers, B.V.

North-Holland, Amsterdam.

Modesti P., Sciomachen A. (1998): A Utility Measure for Finding Multiobjective Shortest

Paths in Urban Multimodal Transportation Networks, European Journal of

Operational Research, vol. 111(3), pp. 495-508.

Modsim (1994): MODSIM II. The Language for Object-Oriented Programming, Reference

Manual, CACI Products Company, 1994.

Moffat J. (2003): Complexity Theory and Network Centric Warfare, CCRP Publication

Series, ISBN 1-893723-11-9, Washington.

Mohn H. (1994): Implementation of a Tactical Mission Planner for Command and Control

of Computer Generated Forces in ModSaf, M. S. Thesis, Naval Postgraduate School,

Monterey.

Montana, D., Herrero, J., Vidaver, G., Bidwell, G. (2000): A Multiagent Society for Military

Transportation Scheduling, Journal of Scheduling, vol. 3(4), pp. 225-246.

Mote J., Murthy I., Olson D. (1991): A Parametric Approach to Solving Bicriterion Shortest

Path Problems, European Journal of Operational Research, vol. 53, pp. 81-92.

Murthy I., Her S.S. (1992): Solving Min-Max Shortest-Path Problems on a Network, Naval

Research Logistics, vol. 39, pp. 669-683.

Murthy, Olson D. (1994): An Interactive Procedure Using Domination Cones for

Bicriterion Shortest Path Problems, European Journal of Operational Research,

vol. 72(2), pp. 418-432.

Nagarajan V., Raja P. (2010): Path Planning for Space Robots: Based on Knowledge

Extrapolation and Risk Factors, Proceedings of the 2010 IEEE International Conference

on Automation and Logistics, August 16-20, Hong Kong and Macau, pp. 373-378.

Najgebauer A. (1999a): Informatyczne systemy wspomagania decyzji w sytuacjach

konfliktowych. Modele, metody i środowiska symulacji interaktywnej, Suplement

do Biuletynu Wojskowej Akademii Technicznej, ISBN 83-908620-6-9, Warszawa.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

223

Najgebauer A., Pierzchała D., Rulka J. (1999b): The Simulation Researches of Decision

Processes in a Conflict Situation with Opposite Objectives, Conference Proceedings of

13th European Simulation Multiconference ESM99, Warsaw, Poland, June 1-4.

Najgebauer A. (2004a): Polish Initiatives in M&S and Training. Simulation Based

Operational Training Support System (SBOTSS) Zlocien, Proceedings of the

ITEC’2004, London, UK, April 20-22.

Najgebauer A. (2004b): Założenia i realizacja Symulacyjnego Systemu Wspomagania

Szkolenia Operacyjnego dla Wojsk Lądowych SZ RP, Materiały XII Konferencji

Naukowej „Automatyzacja Dowodzenia”, 2-4 czerwca, Gdynia-Jurata (publikacja na

CD).

Najgebauer A., Antkiewicz R., Kulas W., Pierzchała D., Rulka J., Tarapata Z., Chmielewski

M. (2004c): A Concept of Simulation Based Diagnostic Support Tool for Terrorism

Threat Awareness, Proceedings of NATO Modelling and Simulation Group Conference,

Koblenz, Germany, October 7-8.

Najgebauer A., Tarapata Z. (2004d): A Terrain Classification Method for Decision

Automata in Simulation Aided System for Operational Training, Proceedings of The

6th NATO Regional Conference on Military Communication and Information Systems,

ISBN 83-920120-0-3, October 6-8, Zegrze (Poland), pp. 111-116.

Najgebauer A., Antkiewicz R., Tarapata Z., Rulka J., Pierzchala D., Kulas W.,

Wantoch-Rekowski R. (2005): Case-Based C2 Modelling and Effective

Development, Implementation and Experimentation for Simulation Based

Operational Training Support System, in the Effectiveness of Modelling and

Simulation – From Anecdotal to Substantive Evidence (pp. 6-1, 6-16), Meeting

Proceedings RTO-MP-MSG-035, ISBN 92-837-0047-3, October 13-14, Warsaw, Paper

6. Neuilly-sur-Seine, France: RTO.

Najgebauer A., Antkiewicz R., Chmielewski M., Kasprzyk R. (2007a): The Prediction of

Terrorist Threat on the Basis of Semantic Associations Acquisition And Complex

Network Evolution. Proceedings of the Military Communications and Information

Systems Conference MCC’2007, Bonn, Germany.

Najgebauer A., Antkiewicz R., Tarapata Z., Rulka J., Kulas W., Pierzchala D.,

Wantoch-Rekowski R. (2007b): The Automation of Combat Decision Processes in

the Simulation Based Operational Training Support System, Proceedings of the IEEE

Symposium on Computational Intelligence for Security and Defense Applications

(CISDA’07), April 1-5, ISBN 1-4244-0698-6, Honolulu (Hawaii).

Najgebauer A. (2008a): Decision Support Systems in the Area of Security and Defense

Using the Simulation and Artificial Intelligence Techniques, Proceedings of the

Military Communications and Information Systems Conference MCC’2008, ISBN

83-920120-5-4, September 23-24, Cracow, Poland.

Najgebauer A., Antkiewicz R., Kulas W., Pierzchała D., Rulka J., Tarapata Z.,

Wantoch-Rekowski R. (2008b): Modelowanie i symulacja procesów dowodzenia w

systemie symulacyjnego wspomagania szkolenia operacyjnego, w: Kasprzyk J.,

Najgebauer A., Sienkiewicz P. (red), Badania operacyjne i systemowe a zagadnienia

społeczeństwa informacyjnego, bezpieczeństwa i walki, ISBN 83-894-7518-9, PAN IBS,

Warszawa , pp. 339-246.

Bibliography

224

Najgebauer A., Antkiewicz R., Kulas W., Pierzchała D., Rulka J., Tarapata Z., Wantoch-

-Rekowski R., Koszela J., Tarnawski T. (2008c): Symulacyjny model działań

bojowych szczebla operacyjnego i taktycznego, w: Kasprzyk J., Najgebauer A.,

Sienkiewicz P. (red), Badania operacyjne i systemowe a zagadnienia społeczeństwa

informacyjnego, bezpieczeństwa i walki, ISBN 83-894-7518-9, PAN IBS, Warszawa,

pp. 253-266.

Najgebauer A., Tarapata Z., Chmielewski M., Kasprzyk R. (2008d): Integracja systemów

dowodzenia SZ RP, w: Mierczyk Z. (red.): Nowoczesne technologie systemów

uzbrojenia, ISBN 978-83-89399-93-9, Wojskowa Akademia Techniczna, Warszawa,

pp. 88-101.

Najgebauer A., Antkiewicz R., Rulka J., Tarapata Z., Kapałka M. (2009): Zagrożenia dla

porządku i bezpieczeństwa publicznego, w: A. Najgebauer (red.) Modele zagrożeń

aglomeracji miejskiej wraz z systemem zarządzania kryzysowego na przykładzie m.st.

Warszawy, ISBN 978-83-61486-22-0, WAT, Warszawa , pp. 563-584.

Newman Mark E. J. (2003): The Structure and Function of Complex Networks, SIAM

Review, vol. 45(2), pp. 167-256.

OneSAF (2008): One Semi-Automated Forces (OneSAF), Operational Requirements

Document, Version 1.1 (2008), http://www.onesaf.net.

Orda A., Rom R. (1990): Shortest-Path and Minimum Delay Algorithms in Networks with

Time-Dependent Edge-Length, Journal of the ACM, vol. 37(3), pp. 607-625.

Orda A., Rom R. (1991): Minimum Weight Paths in Time-Dependent Networks, Networks,

vol. 3, pp. 295-319.

Orda A., Rom R. (1996): Distributed Shortest-Path Protocols for Time-Dependent

Networks, Distributed Computing, vol. 10(1), pp. 49-62.

Oren, T.I. (2001): Impact of Data on Simulation: From Early Practices to Federated and

Agent-Directed Simulations, in: A. Heemink et al. (eds.) Proc. of EUROSIM 2001,

June 26-29, Delft, the Netherlands.

Ozaki K., Asama H, Ishida Y., Matsumoto A., Yokota K., Kaetsu H., Endo I. (1993):

Synchronized Motion by Multiple Mobile Robots Using Communication,

in Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp. 1164-1169.

Pai D.K., Reissell L.M. (1994): Multiresolution Rough Terrain Motion Planning,

Department Of Computer Sciences, University of British Columbia, Technical Report

TR 94-33, Vancouver.

Paige R., Kruskal C.P. (1985): Parallel Algorithms for Shortest Path Problems, in:

Proceedings of the International Conference on Parallel Processing, pp. 14-19.

Pallottino S., Scutella M. (1998): Shortest Path Algorithms in Transportation Models:

Classical and Innovative Aspects, in: (P. Marcotte and S. Nguyen, eds.) Equilibrium

and Advanced Transportation Modelling, Kluwer, pp. 245-281.

Pantziou G., Spirakis P., Zaroliagis Ch. (1990): Efficient Parallel Algorithms for Shortest

Paths in Planar Graphs, Lecture Notes in Computer Science, vol. 447, Springer,

Heidelberg, pp. 288-300.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

225

Papadimitriou C., Yannakakis M. (2000): On the Approximability of Trade-offs and

Optimal Access of Web Sources, in Proc. 41st Symp. on Foundations of Computer

Science-FOCS, IEEE Computer Society, Washington (USA), pp. 86-92.

Pelegrin B., Fernandez P. (1998): On the Sum-Max Bicriterion Path Problem, Computers and

Operations Research, vol. 25(12), pp. 1043-1054.

Perl Y., Shiloach Y. (1978): Finding Two Disjoint Paths Between Two Pairs of Vertices in

a Graph, Journal of the ACM, vol. 25, pp. 1-9.

Petty M.D. (1995): Computer Generated Forces in Distributed Interactive Simulation,

Proceedings of the Conference on Distributed Interactive Simulation Systems for

Simulation and Training in the Aerospace Environment, The International Society for

Optical Engineering, April 19-20, Orlando (USA), pp. 251-280.

Pierzchała D. (2005): Biblioteka programowa wspomagająca wytwarzanie symulatorów

dyskretno-zdarzeniowych w języku wysokiego poziomu, Materiały konferencyjne XI

Warsztatów Naukowych PTSK nt. Symulacja w badaniach i rozwoju, Warszawa,

ISBN/ISSN: 83 88229-80-X.

Pohl J., Chapman A., Pohl K., Primrose J., Wozniak A. (2003): Decision-Support Systems:

Notions, Prototypes, and In-Use Applications With Emphasis on Military

Applications, Design Institute Report: CADRU-11-97, Collaborative Agent Design

Research Center (CADRC), California Polytechnic State University, San Luis

Obispo (CA, USA).

Przemieniecki J.S. (1994): Mathematical Methods in Defence Analysis, American Institute of

Aeronautics and Astronautics, Inc., Washington (DC, USA).

Rajput S., Karr C. (1994): Unit Route Planning, Technical Report IST-TR-94-42, Institute for

Simulation and Training, Orlando (USA).

Rana K., Vickson R.G. (1988): A Model and Solution Algorithm for Optimal Routing of

a Time-Chartered Containership, Transportation Science, vol. 22, pp. 83-96.

Reece D., Kraus M., Dumanoir P. (2000): Tactical Movement Planning for Individual

Combatants, Proceedings of the Conference on Computer Generated Forces and Behavioral

Representation, May 16-18, Orlando (USA).

Reece D. (2003): Movement Behavior for Soldier Agents on a Virtual Battlefield, Presence:

Teleoperators and Virtual Environments, MIT Press Journals, vol. 12 (4), pp. 387-410.

Robinson S. (2004): The Ongoing Search for Efficient Web Search Algorithms, SIAM News,

vol. 37(9), pp. 1-3.

Robinson S., Alifantis T., Edwards J.S., Ladbrook J., Waller T. (2005): Knowledge Based

Improvement: Simulation and Artificial Intelligence for Identifying and Improving

Human Decision-Making in an Operations System, Journal of the Operational

Research Society, vol. 56(8), pp. 912-921.

Rosenthal R. (2010): GAMS - A User's Guide, GAMS Development Corporation, Washington,

DC, USA.

Ross K., Klein G., Thunholm P., Schmitt J., Baxter H. (2004): The Recognition-Primed

Decision Model, Military Review, July-August, pp. 6-10.

Rothenberg J., Narain S., Steeb R., Hefley Ch., Shapiro N. (1989): Knowledge-Based

Simulation: an Interim Report, RAND Note Report N-2897-DARPA, RAND

Corporation, Santa Monica (USA).

Bibliography

226

Sahin, C., Urrea, E., Uyar, M., Conner, M., Hokelek, I., Bertoli, G., Pizzo, Ch. (2008):

Self-Deployment of Mobile Agents in Manets for Military Applications, In:

Proceedings of the 26th Army Science Conference, Orlando (FL, USA), pp. 1-8.

Sancho N.G.F. (1988): A New Type of Multiobjective Routing Problem, Engineering

Optimization, vol. 14, pp. 115-119.

Sawyer R. (1995): Sun Pin: Military Methods, Westview Press, Boulder, Colorado.

Schiavone G.A., Nelson R.S., Hardis K.C. (1995): Interoperability Issues for Terrain

Databases in Distributed Interactive Simulation, Proceedings of the Conference on

Distributed Interactive Simulation Systems for Simulation and Training in the Aerospace

Environment, The International Society for Optical Engineering, April 19-20,

Orlando (USA), pp. 89-120.

Schiavone G.A., Nelson R.S., Hardis K.C. (2000): Two Surface Simplification Algorithms

for Polygonal Terrain with Integrated Road Features, Proceedings of the Conference on

Enabling Technology for Simulation Science, The International Society for Optical

Engineering, April 25-27, Orlando (USA), pp. 221-229.

Schrijver A., Seymour P. (1992): Disjoint Paths in a Planar Graph – A General Theorem,

SIAM Journal of Discrete Mathematics, vol. 5, pp. 112-116.

Schrijver A. (2004): Combinatorial Optimization. Polyhedra and Efficiency, Springer-Verlag,

Berlin- New York.

Senellart P., Blondel V. (2003): Automatic Discovery Of Similar Words, in: Survey of Text

Mining, Springer-Verlag Berlin Heidelberg New York.

Sherali H., Ozbay K., Subramanian S. (1998): The Time-Dependent Shortest Pair of Disjoint

Paths Problem: Complexity, Models and Algorithms, Networks, vol. 31, pp. 259-272.

Sigal E., Pritsker A., Solberg J. (1980): The Stochastic Shortest Route Problem, Operations

Research, vol. 28, pp. 1122-1129.

Silva R., Craveirinha J. (2004): An Overview of Routing Models for MPLS Networks,

Proceedings of the First Workshop on Multicriteria Modelling in Telecommunication

Network Planning and Design, September, Faculty of Economics of the University of

Coimbra.

Simgraphics (1995): Simgraphics II. User’s Manual for MODSIM II, CACI Products

Company, 1995.

Skriver A.J.V., Andersen K.A. (2000): A Label Correcting Approach for Solving Bicriterion

Shortest Path Problems, Computers and Operations Research, vol. 27, pp. 507-524.

Smart P., Shadbolt N., Carr L., Schraefel M. (2005): Knowledge-Based Information Fusion

for Improved Situational Awareness, Proceedings of the 8th International Conference

on Information Fusion, July 25-29, Philadelphia, USA.

Sokolowski, J.A. (2002): Can a Composite Agent be Used to Implement a Recognition-

Primed Decision Model?, in: Proceedings of the Eleventh Conference on Computer

Generated Forces and Behavioral Representation, Orlando, FL., May 7-9, pp. 473-478.

Stentz A. (1994): Optimal and Efficient Path Planning for Partially-Known Environments,

Proceedings of the IEEE International Conference on Robotics and Automation, ICRA’94,

vol. 4 , pp. 3310-3317.

Strogatz S.H. (2001): Exploring Complex Networks, Nature, vol. 410, pp. 268-276.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

227

Subramanian S. (1995): Parallel and Dynamic Shortest-Paths Algorithms in Sparse Graphs,

PhD Thesis, Department of Computer Science, Brown University, Providence.

Sun, T.Y., Tsai, S.J., Huo, Ch.L. (2008): Intelligent Maneuvering Decision System for

Computer Generated Forces Using Predictive Fuzzy Inference System, Journal Of

Computers, vol.3(11), pp. 58-66.

Suurballe J. W. (1974): Disjoint Paths in a Network, Networks, vol. 4, pp. 125-145.

Suurballe J.W., Tarjan R.E. (1984): A Quick Method for Finding Shortest Pairs of Disjoint

Paths, Networks, vol. 14, pp. 325-336.

Tarapata Z. (1997): Algorithm for Simultaneous Finding a Few Independent Shortest

Paths, Conference Proceedings of 9th European Simulation Symposium, pp. 89-93,

Passau.

Tarapata Z. (1998): Algorytmy komputerowego wspomagania planowania

przemieszczania równoległego kolumn, Rozprawa doktorska, Wojskowa Akademia

Techniczna, Warszawa.

Tarapata Z. (1999a): Optimization of Many Task Sending in an Unreliable Parallel

Computing System, Proceedings of The 1st NATO Regional Conference on Military

Communication and Information Systems, October 6-8, Zegrze (Poland), vol. III,

pp. 245-254.

Tarapata Z. (1999b): Simulation Method of Aiding and Estimation of Transportation

Columns Movement Planning in Stochastic Environment, Proceedings of the 13th

European Simulation Multiconference, The Society For Computer Simulation

International, June 1-4, Warsaw, pp. 613-619.

Tarapata Z. (1999c): Metody wyznaczania i oceny planu przemieszczania obiektów

w sieciach stochastycznych uwarunkowanych czasowo, Sprawozdanie końcowe

z realizacji pracy badawczej PBW 911, Wojskowa Akademia Techniczna, Wydział

Cybernetyki, Warszawa.

Tarapata Z. (2000a): A Concept of Parallel Algorithm for Determining Set of Disjoint Paths

in a Network, Proceedings of the 6th International Conference on Models and Methods in

Automation and Robotics, August 28-31, Międzyzdroje (Poland), vol. 2, pp. 895-902.

Tarapata Z. (2000b): Computer Simulation of Individual and Grouped Military Objects

Redeployment, Biuletyn Wojskowej Akademii Technicznej, vol. 1, pp. 147-162.

Tarapata Z. (2000c): Computer Tool for Supporting and Evaluating Convoys

Redeployment Planning, Operations Research and Decision, vol. 1, pp. 91-107.

Tarapata Z. (2000d): Modelling of Terrain for Necessities of Military Objects Movement

Simulation, Biuletyn Wojskowej Akademii Technicznej, vol. 1, pp. 127-146.

Tarapata Z. (2000e): Multi-Paths Optimization in Unreliable Time-Dependent Networks,

Proceedings of The 2nd NATO Regional Conference on Military Communication and

Information Systems, 04-06 October, Zegrze (Poland), vol. I, pp. 181-189.

Tarapata Z. (2000f): Some Aspects of Multi-Convoy Redeployment Modelling and

Simulation, Proceedings of the 21st AFCEA Europe Symposium, Exposition, Prague

October 18-20 (CD publication).

Tarapata Z. (2001): Modelling, Optimisation and Simulation of Groups Movement

According to Group Pattern in Multiresolution Terrain-Based Grid Network,

Bibliography

228

Proceedings of The 3rd NATO Regional Conference on Military Communication and

Information Systems, 10-12 October, Zegrze (Poland) , vol. I, pp. 241-251.

Tarapata Z. (2003a): Military Route Planning in Battlefield Simulation: Effectiveness

Problems and Potential Solutions, Journal of Telecommunications and Information

Technology, vol. 4, pp. 47-56.

Tarapata Z. (2003b): O problemie zliczania dróg w grafach, Badania Operacyjne i Decyzje,

vol. 2, pp. 61-75.

Tarapata Z. (2004a): Decomposition Algorithm for Finding Shortest Paths in Grid

Networks of Large Size, Proceedings of the 15th International Conference on Systems

Science, September 7-10, Wrocław (Poland), vol. III, pp. 209-216.

Tarapata Z. (2004b): Modele i metody planowania i symulacji przemieszczania w systemie

symulacyjnego wspomagania szkolenia operacyjnego, Materiały XII Konferencji

Naukowej „Automatyzacja Dowodzenia”, 2-4 czerwca, Gdynia-Jurata.

Tarapata Z. (2004c): Models and Methods of Movement Planning and Simulation in

Simulation Aided System for Operational Training, Proceedings of The 6th NATO

Regional Conference on Military Communication and Information Systems, ISBN 83-

-920120-0-3, October 6-8, Zegrze (Poland), pp. 152-161.

Tarapata Z. (2005a): Planowanie i symulacja przemieszczania obiektów w symulacyjnych

grach komputerowych – studium przypadku, Materiały Konferencyjne z XI

Warsztatów PTSK, Białystok-Augustów, Warszawa, ISBN 83-88229-80-X,

pp. 370-377.

Tarapata Z. (2005b): Synchronization Method of Many Objects Movement in Computer

Generated Forces Systems, Proceedings of The 7th NATO Regional Conference on

Military Communication and Information Systems, ISBN 83-92 0 120-3-8, October 4-5,

Zegrze (Poland), pp. 93-99.

Tarapata Z. (2005c): Wielokryterialne problemy wyznaczania tras w sieciach

komputerowych, w: Węgrzyn S., Czachórski T., Pochopień Cz. (red.):

Wysokowydajne sieci komputerowe. Nowe technologie, Wydawnictwa Komunikacji

i Łączności, Warszawa, pp. 183-193.

Tarapata Z. (2006a): Adaptacyjny algorytm wyznaczania tras z prognozowaniem

obciążenia sieci, w: Grzywak A., Kwiecień A. , Klamka J., Pochopień Cz. (red.):

Nowe technologie sieci komputerowych, t.II, Wydawnictwa Komunikacji i Łączności,

Warszawa, pp. 31-41.

Tarapata Z. (2006b): Planowanie dróg bezkolizyjnych – metoda minimalizacji wpływu

zagrożeń transportowych (katastrof drogowych i kolejowych), opracowanie

wewnętrzne, Wydział Cybernetyki, WAT, Warszawa.

Tarapata Z. (2006c): Nieklasyczne modele i metody planowania tras w systemach

wspomagania planowania ruchu: analiza złożoności, efektywności i zastosowań,

Logistyka, vol. 6 (publikacja na CD).

Tarapata Z. (2007a): Modele harmonogramowania zsynchronizowanego przemieszczania

wielu obiektów, Badania Operacyjne i Decyzje, vol. 2, pp. 83-103.

Tarapata Z. (2007b): Multicriteria Weighted Graphs Similarity and its Application for

Decision Situation Pattern Matching Problem, Proceedings of the 13th IEEE/IFAC

International Conference on Methods and Models in Automation and Robotics

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

229

(MMAR'2007), ISBN 978-83-751803-3-6, August 27-30, Szczecin, Poland,

pp. 1149-1155.

Tarapata Z. (2007c): Nieklasyczne modele i metody planowania tras w systemach

wspomagania planowania ruchu: analiza złożoności, efektywności i zastosowań,

Prace Naukowe Politechniki Warszawskiej, seria Transport, Zeszyt 60, pp. 99-114.

Tarapata Z. (2007d): Selected Multicriteria Shortest Path Problems: An Analysis of

Complexity, Models and Adaptation of Standard Algorithms, International Journal

of Applied Mathematics and Computer Science, vol. 17(2), pp. 269-287.

Tarapata Z. (2007e): The Decision Automata for Manoeuvre Planning and Control in

Simulation Aided System for Operational Training, Proceedings of the Military

Communications and Information Systems Conference MCC’2007, ISBN 978-3-934401-

-16-7, September 25-26, Bonn, Germany.

Tarapata Z. (2008a): Algorytmy harmonogramowania zsynchronizowanego

przemieszczania wielu obiektów, Badania Operacyjne i Decyzje, vol. 4, pp. 101-132.

Tarapata Z. (2008b): Automatization of Decision Processes in Conflict Situations:

Modelling, Simulation and Optimization, in: Arreguin J.M.R. (edt.): Automation and

Robotics, ISBN 978-3-902613-41-7, I-Tech Education and Publishing, Vienna

(Austria), pp. 297-328.

Tarapata Z. (2008c): Modeling, Simulation and Optimization of Selected Decision

Processes in Conflict Situations – A Case Study, Polish Journal of Environmental

Studies, vol. 17(3B), pp. 467-474.

Tarapata Z. (2008d): Selected scheduling problems for synchronization of multi-objects

movement, Biuletyn Wojskowej Akademii Technicznej, No.4 (652), vol. LVII, pp. 25-37.

Tarapata Z. (2008e): Zastosowanie metod wyznaczania przepływu w sieciach do

planowania manewru wojsk, Biuletyn Instytutu Systemów Informatycznych, No. 2,

pp. 31-44.

Tarapata Z. (2008f): Złożone niedeterministyczne problemy decyzyjne uwarunkowane

czasowo w systemach zarządzania bezpieczeństwem narodowym, Sprawozdanie

końcowe z realizacji pracy badawczej PBW 571, Wojskowa Akademia Techniczna,

Wydział Cybernetyki, Warszawa.

Tarapata Z., Daleki Ł. (2008g): Wykorzystanie modeli pokrycia i alokacji zasobów do

wspomagania decyzji w działaniach ratowniczych i reagowaniu kryzysowym,

Biuletyn Instytutu Systemów Informatycznych, No. 2, pp. 45-58.

Tarapata Z. (2009a): Approximation Scheduling Algorithms for Solving Multi-Objects

Movement Synchronization Problem, ICANNGA'2009, Lecture Notes in Computer

Science, vol. 5495, Springer, Heidelberg, pp. 577-589.

Tarapata Z., Drozdowski T., Mierzejewski K. (2009b): Modele, metody i narzędzia

wspomagania decyzji w sytuacjach zagrożenia systemu transportowego, Przegląd

Telekomunikacyjny i Wiadomości Telekomunikacyjne, vol. 8-9, pp. 1256-1264.

Tarapata Z., Kasprzyk R. (2009c): An Application of Multicriteria Weighted Graph

Similarity Method to Social Networks Analyzing, Proceedings of the International

Conference on Advances in Social Network Analysis and Mining, July 20-22, Athens

(Greece), IEEE Computer Society, ISBN 978-0-7695-3689-7, pp. 366-368.

Bibliography

230

Tarapata Z., Rulka J., Tarnawski T., Drozdowski T., Mierzejewski K. (2009d): Zagrożenia

systemu transportowego, w: A.Najgebauer (red.) Modele zagrożeń aglomeracji

miejskiej wraz z systemem zarządzania kryzysowego na przykładzie m.st. Warszawy,

ISBN 978-83-61486-22-0, WAT, Warszawa, pp. 415-452.

Tarapata Z. (2010a): A Parallel Decomposition Algorithm for Shortest Path Problem in

Large-Size Mesh Networks, Biuletyn Wojskowej Akademii Technicznej, vol. LIX, No. 3,

pp. 295-306.

Tarapata Z. (2010b): Movement Simulation and Management of Cooperating Objects in

CGF Systems: a Case Study, KES-AMSTA’2010, Lecture Notes in Artificial Intelligence,

vol.6070, Springer, Heidelberg, pp. 293-304.

Tarapata Z. (2010c): Multiresolution Models and Algorithms of Movement Planning and

their Application for Multiresolution Battlefield Simulation, ACIIDS'2010, Lecture

Notes in Artificial Intelligence, vol. 5991, Springer, Heidelberg, pp. 378-389.

Tarapata Z., Chmielewski M., Kasprzyk R. (2010d): An Algorithmic Approach To Social

Knowledge Processing And Reasoning Based On Graph Representation – A Case

Study, ACIIDS'2010, Lecture Notes in Artificial Intelligence, vol. 5991, Springer,

Heidelberg, pp. 93-104.

Tarapata Z., Kasprzyk R. (2010e): Graph-Based Optimization Method for Information

Diffusion and Attack Durability in Networks, RSCTC'2010, Lecture Notes in

Artificial Intelligence, vol.6086, Springer, Heidelberg, pp. 698-709.

Tarapata Z., Mierzejewski K. (2010f): Prognozowanie i symulacja skutków wystąpienia

zagrożeń systemu komunikacyjnego aglomeracji, Symulacja w badaniach i rozwoju,

vol. 1(1/2010), pp. 93-106.

Tarapata Z., Wrocławski S. (2010g): Subgraphs Generating Algorithm for Obtaining Set of

Node-Disjoint Paths in Terrain-Based Mesh Graphs, MIG’2010, Lecture Notes in

Computer Science, pp.6459, Springer, Heidelberg, pp.398-409.

Tarapata Z. (2010h): Integracja systemów dowodzenia, Raport końcowy konsorcjanta

z Wojskowej Akademii Technicznej z realizacji projektu rozwojowego nr MNiSW

0050/R/T00/2008/06, Wydział Cybernetyki, Wojskowa Akademia Techniczna,

Warszawa.

Tarapata Z. (2011a): Terrain-Based Modelling and Optimization of Groups Movement

Using Group Patterns, Biuletyn Instytutu Systemów Informatycznych, No. 7 (in press).

Tarapata Z. (2011b): Movement Planning and Simulation of Military Units in "Zlocien"

System: Models and Methods, Biuletyn Instytutu Systemów Informatycznych, No. 7,

(in press).

Tarapata Z., Godlewski P. (2011c): Wielorozdzielcze modele i algorytmy planowania

przemieszczania oraz ich zastosowanie w wielorozdzielczej symulacji pola walki,

Symulacja w badaniach i rozwoju, vol. 3 (in press).

Tarapata Z., Wrocławski S. (2011d): Metody rozwiązywania problemu najkrótszych dróg

wierzchołkowo rozłącznych przechodzących przez wybrane wierzchołki w sieciach

o strukturze kraty, Biuletyn Wojskowej Akademii Technicznej, vol. 3 (in press).

Tarjan R.E. (1983): Data Structures and Network Algorithms, Society for Industrial and

Applied Mathematics, Philadelphia, Pennsylvania.

Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation...

231

Tsaggouris G., Zaroliagis Ch. (2005): Improved FPTAS for Multiobjective Shortest Paths

with Applications, Technical Report No. TR 2005/07/03, Research Academic

Computer Technology Institute.

Tuft D., Gayle R., Salomon B., Govindaraju N., Lin M., Manocha D. (2006): Accelerating

Route Planning and Collision Detection for Computer Generated Forces Using

GPUS, Proc. of Army Science Conference, Orlando (USA).

Tung C.T. Chew , K.L. (1992): A Multicriteria Pareto-Optimal Path Algorithm, European

Journal of Operational Research, vol. 62, pp. 203-209.

Tung C.T., Chew K.L. (1988): A Bicriterion Pareto-Optimal Path Algorithm, Asia-Pacific

Journal of Operational Research, vol. 5, pp. 166-172.

Umeyama S. (1988): An Eigen Decomposition Approach to Weighted Graph Matching

Problems, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 10(5),

pp. 695-703.

Undeger C., Polat F., Ipekkan Z. (2001): Real-Time Edge Follow: A New Paradigm to

Real-Time Path Search, Annual European Game-On Conference, London, UK,

November 30-December 1.

Urrutia J. (1999): Handbook of Computational Geometry, Elsevier Science Publishers, B.V.

North-Holland, Amsterdam.

Vassilvitskii S., Yannakakis M. (2004): Efficiently Computing Sufficient Trade-off Curves,

in Automata, Languages, and Programming, ICALP'2004, Lecture Notes in Computer

Science, vol. 3142, Springer, Heidelberg, pp. 1201-1213.

Van der Akker, M., Geraerts R., Hoogeveen H, Prins C. (2010): Path Planning for Groups

Using Column Generation, MIG’2010, Lecture Notes in Computer Science, pp. 6459,

Springer, Heidelberg, pp. 94-105.

Wang X., Chen G. (2003): Complex Networks: Small-World, Scale-Free and Beyond, IEEE

Circuits and Systems Magazine, vol. 3 (1), pp. 6-20.

Wang, Y. (2006): Numerical Modelling of Autonomous Agent Movement and Conflict,

Computational Management Science, vol. 3(3), pp. 207-223.

Weng M, Wei X., Qu R., Cai Z. (2009): A Path Planning Algorithm Based on Typical Case

Reasoning, Geo-spatial Information Science, vol. 12(1), pp. 66-71.

Warburton A. (1987): Approximation of Pareto Optima in Multiple-Objective,

Shortest-Path Problems, Operations Research, vol. 35, pp. 70-79.

Watts D. J., Strogatz S. H. (1998): Collective dynamics of „small-world” networks, Nature,

vol. 393, pp. 440-442.

Wellman M., Ford M., Larson K. (1995): Path Planning under Time-Dependent

Uncertainty, Proceedings of the 11th Conference of Uncertainty in artificial intelligence,

Montreal, pp. 532-539.

White D.J. (1987): The Set of Efficient Solutions for Multiple Objective Shortest Path

Problems, Computers and Operations Research, vol.9(2), pp.101-107.

Wijeratne A.B., Turnquist M.A., Mirchandani P.B. (1993): Multiobjective Routing of

Hazardous Materials in Stochastic Networks, European Journal of Operational

Research, vol. 65, pp. 33-43.

Wilson R.J. (1998): Wprowadzenie do teorii grafów, PWN, Warszawa.

Bibliography

232

Wu Q., Hartley J., Al-Dabass D. (2005): Time-Dependent Stochastic Shortest Path(s)

Algorithms for a Scheduled Transportation Network, Intern. Journal of Simulation,

vol. 6 (7-8), pp. 53-60.

Zafar, K., Qazi, S.B., Baig, A.R. (2006): Mine Detection and Route Planning in Military

Warfare using Multi Agent System, in: Proceedings of the 30th Annual International

Computer Software and Applications Conference COMPSAC’2006, Chicago, vol. 2,

pp. 327-332.

Zeigler B., Rozenblit J., Chtistensen E. (1991): Reducing the Validation Bottleneck with

a Knowledge-Based, Distributed Simulation Environment, Expert Systems with

Applications, vol. 3, Issue 3, pp. 329-342.

Zeigler B., Cho T., Rozenblit J. (1996): A Knowledge-Based Simulation Environment for

Hierarchical Flexible Manufacturing, IEEE Transactions On Systems, Man, And

Cybernetics-Part A: Systems And Humans, vol. 26(1), pp. 81-90.

Zhan F. B., Noon C. E. (1998): Shortest Path Algorithm: An Evaluation using Real Road

Networks, Transportation Science , vol. 32, pp. 65-73.

Zhan F. B., Noon C. E. (2000): A Comparison Between Label-Setting and Label-Correcting

Algorithms for Computing One-to-One Shortest Paths, Journal of Geographic

Information and Decision Analysis, vol. 4, pp. 1-13.

Zhao Y. (1997): Vehicle Location and Navigation Systems, Artech House Publishers.

Zlocien (2002): Projekt techniczny systemu symulacyjnego wspomagania szkolenia operacyjnego

pk. Złocień, t. II, Wydział Cybernetyki, WAT, Warszawa.

Streszczenie

W monografii Modele i algorytmy wspomagania decyzji oraz symulacji oparte na

wiedzy w zastosowaniach obronnych i transportowych zaprezentowano nowe

i przeanalizowano istniejące modele i algorytmy wspomagania decyzji i symulacji

w środowisku opartym na wiedzy, w zastosowaniach obronnych

i transportowych. Skupiono się przede wszystkim na złożoności obliczeniowej

oraz dokładności analizowanych algorytmów, jak również ich użyteczności

w praktycznych zastosowaniach. Wiele z analizowanych modeli i algorytmów ma

charakter interdyscyplinarny, jednakże w większości przypadków skupiono się na

omówieniu zastosowań we wspomnianych systemach transportowych

i obronnych. Zwrócono również uwagę na wykorzystanie opisywanych modeli

i algorytmów w systemach zarządzania kryzysowego i wczesnego ostrzegania.

Poszukiwanie rozwiązania złożonych problemów decyzyjnych, do których

należą również problemy związane z procesami pola walki, może być

rozpatrywane, jako pewien zbiór czynności, których powodzenie realizacji zależy

od dostępności źródeł informacji oraz, w szczególności, od doświadczenia

i umiejętności decydenta. Dlatego też celowym jest stosowanie komputerowych

systemów wspomagania decyzji i symulacji, w których wiedza i doświadczenie

decydenta wspomagane są komputerowymi bazami wiedzy, modelami

i algorytmami, dzięki którym podejmowanie decyzji oraz symulowanie skutków

tych decyzji stają się łatwiejsze, szybsze i bardziej efektywne. Wykorzystanie tego

typu systemów jest szczególnie uzasadnione w zastosowaniach wojskowych.

Procesy dowodzenia na polu walki, w warunkach stresu i ograniczonego czasu, są

skomplikowane i złożone. Zastosowanie komputerowych systemów wspomagania

decyzji i symulacji pozwala, przynajmniej częściowo, wyeliminować negatywny

wpływ stresu na podejmowane decyzje, skrócić czas wypracowania tych decyzji

oraz symulować ich skutki.

Do grupy najistotniejszych problemów należą problemy transportowe,

w szczególności związane z planowaniem przemieszczania. Problemy te są istotne

nie tylko w zastosowaniach wojskowych, ale również w: sieciach komputerowych,

mobilnych robotach, systemach ewakuacji, systemach nawigacji samochodowej,

grach komputerowych. W zastosowaniach wojskowych problemy te spotykane są

zarówno w symulatorach pola walki (wyznaczanie tras przed rozpoczęciem

symulacji działań, jak i w trakcie ich trwania), jak również w systemach

wspomagania decyzji, które wspierają zautomatyzowane systemy dowodzenia

klasy C3(4)ISR. Jako nieodłączne w tego typu systemach stanowią o ich

Streszczenie

234

adekwatności, efektywności i użyteczności, dlatego też są jednym z głównych

źródeł zainteresowania tej monografii. Opisywane systemy powinny bazować na

wiedzy, a modele i algorytmy wspomagania decyzji oraz symulacji powinny z tej

wiedzy korzystać. Wiedza jest przetworzoną, na podstawie pewnych reguł,

informacją pochodzącą z różnego rodzaju tematycznych baz danych (o terenie,

regulaminów działań taktycznych, uzbrojenia i sprzętu wojskowego, struktur

wojsk, itp.) i obejmuje takie elementy, jak: przejezdność wskazanych fragmentów

terenu, wzorce sytuacji decyzyjnych, wzorce wariantów działań dla różnych

rodzajów działań, itd. Celem monografii jest dostarczenie takich właśnie modeli

i algorytmów wspomagania decyzji i symulacji w zastosowaniach obronnych

i transportowych, które bazują na tejże wiedzy.

W monografii zdefiniowano szereg modeli i algorytmów planowania tras

przemieszczania: dekompozycyjnych i wielorozdzielczych, wielokryterialnych,

rozłącznych. Zdefiniowano jedno- i dwukryterialny problem planowania

zsynchronizowanego przemieszczania wielu obiektów oraz podano algorytmy

rozwiązania tych problemów. Problem synchronizacji rozpatrywano w dwóch

kategoriach: związanych z czasami osiągnięcia pewnych punktów synchronizacji

oraz z pewnymi wzorcami ugrupowania. Dla wszystkich nowych algorytmów

oszacowano ich złożoność obliczeniową i dokładność, udowodniono pewne ich

własności, wskazano zastosowania, podano wyniki badań eksperymentalnych

(m.in. bazując na systemach, w których zostały zaimplementowane). Porównano

również te wyniki z wynikami ze znanych z literatury algorytmów; w wybranych

przypadkach pokazano, jak można wykorzystać istniejące algorytmy do

rozwiązania sformułowanych problemów. Sformułowano problem identyfikacji

sytuacji decyzyjnych na polu walki, jako problem rozpoznawania pewnego wzorca

oraz opisano dwa podejścia do rozwiązania problemu: podejście oparte

o porównywanie wektorów oraz wyznaczanie wielokryterialnego podobieństwa

grafów ważonych. Podano przykład wykorzystania obu podejść do

rozpoznawania rzeczywistych sytuacji na polu walki. Zdefiniowano automat

decyzyjny do marszu, który zastępuje dowódcę szczebla batalionu w systemie

symulacyjnym typu CGF (Computer Generated Forces), opisano jego własności

i zastosowanie. Przedstawiono wybrane modele i algorytmy symulacji

przemieszczania pojedynczych i grupowych obiektów. Przedstawiono również

różne metody modelowania terenu, jako podstawowego elementu środowiska

działań. Podano przykład modelu terenu wykorzystywanego w symulacyjnym

systemie Złocień oraz jednym z systemów wspomagania decyzji.

Monografię podsumowuje prezentacja opisywanych modeli i algorytmów

w rzeczywistych systemach symulacyjnych i wspomagania decyzji takich, jak:

Złocień, Guru, MSCombat, CAVaRS. Opisano również wybrane zastosowania

w systemach zarządzania kryzysowego i wczesnego ostrzegania.

atarrE
 rof eht " koob sledoM egdelwonK rof smhtiroglA dna - troppuS noisiceD desaB

snoitacilppA tropsnarT dna ecnefeD ni noitalumiS dna " yb nettirw ataparaT .Z

egaP woR
(d- t ,nwod -)pot

tneserP eb dluohS

23 d3 1.2.3 1.3
341 4t ,1 ,,1 ,,1 KkMnVj ,1 ,,1 KkAj

341 d6 V(KM +K +)2+ KA V(KM +2K +)2+ KA
461 d2 hcus a a hcus
781 t1 neicolZ neicolZ
002 t3)0002 ,sberK()2002 ,sberK(
002 d9)0002 ,sberK()2002 ,sberK(
032 d81 9546.pp 9546.lov

