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1. Introduction 

1.1. Research Domain 

1.1.1. A Short Description 

Decision making is an inseparable element of human life. Many of human 

decisions concern complex problems solving. These problems have properties, 

which distinguish them from simple problems (Pohl et al., 2003): they can involve 

many related issues or variables; some of the variables may be only partially 

defined and some may yet to be discovered; complex problem situations are 

pervaded with dynamic information changes; solution objectives may change; they 

typically have more than one solution. The solution of complex problems can be 

categorized as intensive information activity, which its success depends largely on 

the availability of information resources and, in particular, the experience and 

reasoning skills of the decision-makers. This clearly presents an opportunity for the 

useful employment of computer-based Decision Support Systems (DSS) in which the 

capabilities of the human decision-maker are complemented with knowledge 

bases, expert agents, and self-activating conflict identification and monitoring 

capabilities. Therefore, we can write the following definition of the DSS 

(Holsapple & Whinston, 1996): 

"The Decision Support System (DSS) is a computer-based information system 

that supports business or organizational decision-making activities". 

In general, in the decision making process the following stages are considered 

(Najgebauer, 1999a): recognition of a decision situation, determination of possible 

decision variants, decision choice, estimation of effects of decisions being realized, 

modification or changing the decision.  

Each of these stages can be supported by a computer. A computer support causes 

that decision making may be easier, faster and more effective than without  

a computer. Several models and methods from such domains as operations 

research (e.g. simulation, optimization, games theory, etc.), pattern recognition, 

transportation (e.g. paths planning), analysis of algorithms are used. Each of these 

methods can be supported by a computer as well. 

One of the most complicated and complex decision processes concerns 

military applications. Much has been written in literature about the complexities of 

planning and execution of these processes (Dockery & Woodcock, 1993; Ground et 

al., 2002; Moffat, 2003; Najgebauer, 1999a; Pohl et al., 2003; Przemieniecki, 1994; 
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Sawyer, 1995). Military command and control processes are information intensive 

activities, involving many variables (tasks of friendly forces, expected actions of 

opposite forces, environmental conditions – terrain, weather, time of the day and 

season of the year, current state of own (friend) and opposite forces in the sense of 

personnel, weapon systems and military materiel, etc.) with strong 

interrelationships and uncertainty. Two of the factors which are especially essential 

in military decision-making are human battlefield stress and a limited time. 

Therefore, it is very important to give, for military decision-makers, computer 

tools, which support their decisions and try to partially eliminate the negative 

impact of their stress on the decision being made and shorten the decision-making 

time. Moreover, the information sources are typically widely distributed and 

subject to continuous change. In such a case, in order to improve situational 

awareness, data fusion and integration is done (Antkiewicz et al., 2010b; 2010d; 

Chmielewski, 2008a; Chmielewski & Kasprzyk, 2008b; Koszela & Chmielewski, 

2008; Najgebauer et al., 2008d; Smart et al., 2005). 

A typical military decision planning process is similar to a general decision making 

process described earlier and it contains the following steps: 

1. the assessment of both own and opposite forces, terrain as well as other factors 

which may have an influence on a task realization, 

2. the identification of a decision situation, 

3. the determination of decision variants (Course of Actions, CoA), 

4. the variants (CoA) evaluation (verification), 

5. the recommendation of the best variant (CoA) chosen among these that meet the 

proposed criteria. 

 

One of the methods which can be used in the military decision planning process is 

computer simulation (Najgebauer, 1999a). Simulators are used in the following 

steps of this process: (4) the variant verification (via simulation) and (5) the variant 

recommendation. Moreover, simulation can also be used for: 

• optimization of command chains of military units, 

• evaluation of the military operational rules and improving the command and 

control procedures, 

• research of the military equipment’s parameters, which modify results of 

military actions, 

• quality verification of battlefield process models (shooting, target searching, 

movement, etc.). 

In other words: simulation results can be used to make or change decisions. On the 

other hand, simulation is one of the basic methods in military trainings 

(Najgebauer, 1999a). This is the second main role of the simulation in the military 

area. 
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 One of the most important decision problems in the military area (but not 

only in this area) is movement planning. Object movement is an essential element 

of combat actions and it is related to manoeuvre planning of military detachments 

on the battlefield during battle as well as during preparation for battle. This 

process is very important from the point of view of simulating a complex system. It 

may have an effect on accuracy, adequacy, effectiveness and other characteristics 

of these systems. Redeployment planning and simulation of military objects is  

a basic problem, especially in combat simulators. Moreover, movement (paths, 

routing, motion) planning is also an essential element in other applications: civilian 

transportation, mobile robots, car navigation, virtual agents in computer games, 

etc. These properties make this problem as interdisciplinary and multi-domains. 

This problem should be solved using specialized algorithms to avoid its internal 

complexity (Tarapata, 2003b). Therefore, movement planning and simulation 

models and algorithms are one of the main problems considered in this book. 

In the military domain, decision support and simulation systems can support 

systems of class C4ISR (Command, Control, Communications, Computers, Intelligence, 

Surveillance and Reconnaissance) and their types1 (Pohl et al., 2003; Ground et al., 

2002). In order to make better decisions, these systems should be  

a knowledge-based (KB). Models and algorithms for these two fields: decision 

support and simulation in KB environment are the most interesting from this 

book's point of view. 

1.1.2. Knowledge-Based Decision Support 

 As it has been written in the previous chapter, the Decision Support System 

(DSS) should be a knowledge-based system. In this context knowledge can be 

described as (Pohl et al., 2003): 

 "(...) experience derived from observation and interpretation of past events or 

phenomena, and the application of methods to past situations. Knowledge bases 

capture this experience in the form of rules, case studies, standard practices, and 

typical descriptions of objects and object systems that can serve as prototypes. 

Problem solvers typically manipulate these prototypes, in several different ways. 

Therefore, we use our knowledge of past similar situations as a baseline for 

defining the current problem system and developing a solution strategy (...)". 

An example of a knowledge-based decision support system schema for 

military applications (borrowed from Guru system (Guru, 2005)) is presented in 

Fig. 1.1. We can observe two elements, which contain a knowledge base (KB):  

operational-tactical KB and terrain KB. The first one is used to collect knowledge 

being used to express the character of the digital battlefield during automation of 

                                                 
1 C2=Command and Control; C3I=Command, Control, Communications and Intelligence, etc. 
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military decision-making: military rules, decision situation patterns and 

recognition rules, course of action (CoA) patterns, etc. The second one (terrain KB) 

collects pre-processed information from the terrain database. For example, in 

chapter 2.3 we presented a network model of the terrain (with rule-based functions 

described on the network's nodes and arcs) in the Zlocien simulation system, which 

is based on pre-processed information from the terrain database, and in chapters 

5.2-5.3 we use the operational-tactical KB to identify decision situations and 

automatization of the march process. 

Other examples of knowledge-based decision support systems in the military 

area can be found in (Ground et al., 2002; Pohl et al., 2003). 

 

 

Fig. 1.1. An example of a knowledge-based decision support system schema for military 
applications (Guru, 2005) 

 

For paths planning as one of the main elements in terrain(knowledge)-based 

decision support and simulation systems we can indicate many examples of 

knowledge-based applications: for mobile robots (Guo et al., 2010; Heero, 2006; 

Hodal & Dvorak, 2008; Hu et al., 2004; ; Nagarajan & Raja, 2010; Stentz, 1994; Weng 

et al., 2009; Zafar et al., 2006) and for the military (Campbell et al., 1995; 

Gilmore & Semeco, 1985; Lee & Fishwick, 1995; Lee, 1996; Logan & Sloman, 1997b; 

Rajput & Karr, 1994). 

1.1.3. Knowledge-Based Simulation 

 The knowledge-based simulation was conceived at the RAND Corporation in 

the late 1970’s and early 1980’s applying artificial intelligence to simulation 



Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation... 

 

9 

(Rothenberg et al., 1989). One of the applications has been considered deals with  

knowledge-based validation of simulation results in the military domain (Kornell, 

1987; Madni et al., 1987). Other applications (civilian) of knowledge-based 

simulation have been described in (Cheung et al., 2007; Duran & Costaguta, 2009; 

Oren, 2001; Robinson et al., 2005; Zeigler et al., 1991; 1996). Simulation is used, 

because a knowledge-based simulation is understood as a compilation of simulation and 

artificial intelligence techniques, hence it is agent-based (Oren, 2001). The agent 

simulation allows simulation of natural or engineered entities with cognitive 

abilities. Therefore, agent simulation is very appropriate for the simulation of 

intelligent entities. Agent-based simulation is the use of agent technology to 

generate the behaviour of models. There are many applications of agent-based 

simulation in the military area. In the paper (Reece, 2003) the author has developed 

a movement behaviour model for soldier agents who populate a virtual battlefield 

environment. Paper (Cil & Mala, 2010) proposes a two-layer hybrid agent 

architecture to match the needs of future multi-dimensional warfare. This 

architecture has an integrated simulation tool to simulate planning results from the 

cognitive layer via reactive agents. In the paper (Zafar et al., 2006) the authors show 

the possibility of using hybrid architecture that implements mine detection, 

obstacle avoidance and route planning with a group of autonomous agents with 

coordination capabilities. Groups of inter cooperating multi agents working 

towards a common goal have the potential to perform a task faster and with an 

increased level of efficiency then the same number of agents acting in an 

independent manner. The paper (Montana et al., 2000) discusses the  

proof-of-concept of an automated system for scheduling all the transportation for 

the United States military down to a low level of detail. Their approach is to use  

a multi-agent society with each agent performing a particular role for a particular 

organization. They show that the usage of a common multiagent infrastructure 

allows easy communication between agents, both within the transportation society 

and with external agents generating transportation requirements. In the paper 

(Gelenbe et al., 2004) authors describe how a complex and simulation environment 

can be used to fuse information about the behaviour of groups of objects of 

interest. The fused information includes the objects' individual pursuits and aims, 

the physical and geographic setting within which they act, and their collective 

social behaviour. The group control algorithms combine reinforcement learning, 

social potential fields and imitation. The paper (Sahin et al., 2008) deals with  

bio-inspired computation techniques, such as genetic algorithms, for real-time  

self-deployment of mobile agents to carry out tasks similar to military applications. 

In the paper (Wang, 2006) authors build stochastic mathematical models, in 

particular G-network models of behaviour. They have demonstrated their 

approach in the context of urban military planning and analyzed the obtained 



 

10 

results. The results are validated against those obtained from a simulator. The 

results suggest that the proposed approach has tackled one of the classical 

problems in modelling multi

performance at low computational cost.

For many years in military applications a simulated battlefield 

training military personnel. There are at least three ways to provide the simulated 

opponent: 

• two groups of trainees in simulators may oppose each other (often used);

• human instructors who are trained to behave in a way that mimics the desired 

enemy doctrine (seldom used);

• computer system that generates and controls multiple simulation entities using 

software and possibly a human operator.

The last approach is known as a 

a Computer Generated Force (

Simulation (DIS) systems to control large numbers of autonomous battlefield 

entities using computer equipment and software rather than humans in simulators. 

The advantages of the 

• they lower the cost of a 

simulators that must be purchased and maintained;

• CGF can be programmed, in theory, to behave according to the tactical doctrine 

of any desired opposing force, and so eliminate 

human operators to behave like the current enemy;

• CGF can be easier to control by a single person than an opposing force made up 

of many human operators and it may give the training instructor greater 

control over the training

 

Fig. 1.2. A potential simulation system a

1. Introduction 

results. The results are validated against those obtained from a simulator. The 

results suggest that the proposed approach has tackled one of the classical 

in modelling multi-agent systems and is able to predict the systems’ 

ance at low computational cost. 

For many years in military applications a simulated battlefield 

training military personnel. There are at least three ways to provide the simulated 

two groups of trainees in simulators may oppose each other (often used);

human instructors who are trained to behave in a way that mimics the desired 

emy doctrine (seldom used); 

computer system that generates and controls multiple simulation entities using 

software and possibly a human operator. 

The last approach is known as a Semi-Automated Force (SAF

(CGF). The CGF is used in military Distributed Interactive 

) systems to control large numbers of autonomous battlefield 

entities using computer equipment and software rather than humans in simulators. 

the CGF are well-known (Petty, 1995):  

they lower the cost of a DIS system by reducing the number of standard 

simulators that must be purchased and maintained; 

can be programmed, in theory, to behave according to the tactical doctrine 

of any desired opposing force, and so eliminate the need to train and retrain 

human operators to behave like the current enemy; 

can be easier to control by a single person than an opposing force made up 

of many human operators and it may give the training instructor greater 

control over the training experience. 

simulation system architecture for military applications (Dompke, 2001)

results. The results are validated against those obtained from a simulator. The 

results suggest that the proposed approach has tackled one of the classical 

agent systems and is able to predict the systems’ 

For many years in military applications a simulated battlefield is used for 

training military personnel. There are at least three ways to provide the simulated 

two groups of trainees in simulators may oppose each other (often used); 

human instructors who are trained to behave in a way that mimics the desired 

computer system that generates and controls multiple simulation entities using 

SAF or SAFOR) or  

Distributed Interactive 

) systems to control large numbers of autonomous battlefield 

entities using computer equipment and software rather than humans in simulators.  

system by reducing the number of standard 

can be programmed, in theory, to behave according to the tactical doctrine 

the need to train and retrain 

can be easier to control by a single person than an opposing force made up 

of many human operators and it may give the training instructor greater 

 

(Dompke, 2001) 
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A potential simulation system architecture (

system inside the SSA 

cooperate with C3I systems.

 

Fig. 1.3. Modules of the 

 

The role of each of the modules 

(Dompke, 2001): 

(1)   the Data Collection

elements as instructed by 

module are as follows:  

(1.1) get data request, 

(1.2) find data,  

(1.3) prepare data, 

(1.4) provide data reference;

(2)   the Situation Assessment

need to be collected, interprets the mission received by the 

current assessment of the situation and

meaningful events. Basic f

(2.1) produce data requests,

(2.2) interpret and fuse data

(2.3) monitor critical events
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 (4)   the Decision-Making module evaluates the various courses of action and ranks 

them according to a set of pre-determined and derived criteria. It will also support 

the negotiation process between CGFs or human decision makers that may be 

required to develop a solution for the larger context in which the CGFs decision are 

included. Basic functions of this module are as follows:  

(4.1) rank options, 

(4.2) goals decision making approach, 

(4.3) negotiate; 

(5)   the Communication module supports the exchange of data between the CGF 

and all other elements of the simulation system. It transforms data into the 

appropriate format for local and external interpretation. Basic functions of this 

module are as follows: 

(5.1) interface, 

(5.2) report. 

 

Selected technologies (important from our point of view) which are used by 

functions of CGFs are as follows (function number − technology (criticality: (L)ow, 

(M)edium, (H)igh)): (1.2) − knowledge discovery (L), knowledge based system (L), 

pattern recognition (L); (2.1) − knowledge discovery (H); (2.2) − pattern recognition 

(H); (3.1) − search algorithms (H), knowledge based system (H), models and 

methods of operations research (L); (4.1) − models and methods of operations 

research (H); (4.2) − planning algorithms (H), search algorithms (H). 

From the description presented above results, that the CGF systems are strongly 

knowledge-based and they use models and methods of operations research. 

As an inseparable part of the CGF, modules for route planning based on the  

real-terrain models are used (Ceranowicz, 1994; Dompke, 2001; Henninger et al., 

2000; OneSAF, 2008; Tuft et al., 2006). For example in ModSAF (Modular  

Semi-Automated Forces), in module "SAFsim", which simulates the entities, units, 

and environmental processes the route planning component is located 

(Longtin & Megherbi, 1995). 

Moreover, automated route planning will be a key element of almost any 

automated terrain analysis system that is a component of military C4ISR systems. 

1.2. Research Objectives and Theses 

The main goal of this book is to present new and analyse existing models and 

algorithms for decision support and simulation, especially in defence and transport 

applications, in a knowledge-based environment. The works have mainly focused 

on computational complexity and accuracy of presented algorithms as well as their 

usefulness in existing and new computer-based decision support and simulation 
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systems. Many of the presented models and algorithms are interdisciplinary but in 

the majority of cases we focus on defence and transport applications. 

It should be emphasized that the goal of this book are not problems 

concerning knowledge representation, knowledge acquisition, knowledge 

discovery, building expert systems, etc., but providing the models and algorithms 

to support the decisions and simulate their effects in DSSs and simulation systems, 

which are knowledge-based and the described algorithms can use this knowledge. 

 

 The main research theses presented in the book are as follows: 

T1. knowledge-based decision support and simulation are effective methods to 

support decisions and simulate their effects in a dynamically changing 

environment and can be used in defence and transport applications; 

knowledge may concern an environment as well as decision processes being 

analysed; 

T2. automatization of decision processes allow us to research these processes (e.g. 

using simulation) as well as decrease the cost and the time of complex process 

analysis; 

T3. the use of specialized algorithms (which are new or adapted from existing 

algorithms) for solving decision problems can decrease computational 

complexity and/or increase accuracy of traditional algorithms; these 

algorithms can and should be a part of the knowledge-based DSSs and/or 

simulation systems. 

 

 These theses are verified in chapters of this book, which are organized as 

presented below. 

1.3. Contents of the Book 

Presented in chapter 2 is the review of methods of environment modelling for 

knowledge-based decision making and simulation. A few methods of digital map 

representation are described: the visibility diagram, Voronoi diagram, straight-line 

dual of the Voronoi diagram, edge-dual graph, line-thinned skeleton, regular grid 

of squares, grid of homogeneous squares coded in a quadtree system (as  

a representation of multiresolution terrain). An example is described of the terrain  

knowledge-based model being used in the real simulation Zlocien system. 

Moreover, four main approaches concerning terrain representation that are used in 

a battlefield simulation for paths planning have been described: free space 

analysis, vertex graph analysis, potential fields and grid-based algorithms. 

Movement (paths, routing, motion) planning is an essential element in many 

applications: transportation, mobile robots, car navigation, virtual agents in 

computer games, military route planning, etc. Therefore, chapter 3 contains  
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a detailed discussion on three main models and algorithms for terrain-based paths 

planning: (1) decomposition and multiresolution approach to path planning, (2) 

multiobjective (multicriteria) paths planning and (3) disjoint paths planning. 

In the first case, a decomposition method (DSP – decomposition shortest paths) is 

presented and its properties, which decrease computational time of path searching 

in multiresolution and large graphs. The goal of the method is not only 

computation time reduction but, most of all, using it for multiresolution path 

planning. A theoretical and experimental analysis of the method is discussed, 

especially from the computational complexity and accuracy point of view. The 

parallelization method of the DSP algorithm is also analysed. An example of using 

this method in a multiresolution battlefield simulation is described. 

In the second case, selected multicriteria (multiobjective) approaches for the 

shortest path problems are presented. Classification of the multiobjective shortest 

path problems (MOSP) is given. Different models of MOSP problems are discussed 

in details. Methods of solving formulated optimization problems are presented. 

Analysis of complexity of presented methods and ways of adaptation of classical 

algorithms for solving multiobjective shortest path problems are described. The 

GAMS model for one of the MOSP problems is defined. Comparison of 

effectiveness of solving selected MOSP problems defined as: mathematical 

programming problems (using CPLEX 7.0 solver) and multi-weighted graph 

problems (using modified Dijkstra’s algorithm) is given. Experimental results of 

using the presented methods for multicriteria path selection in a terrain-based grid 

network are given.  

In the third case, specific disjoint paths planning models and algorithms are 

considered. We classify disjoint-paths planning problems and formulate  

two types of problems of node-disjoint paths visiting specified nodes: NDRP-Sum 

and NDRP-Max. The first one (NDRP-Sum) minimizes the total cost of all (K>1) 

disjoint paths visiting specified nodes in the restricted area and the second one  

(NDRP-Max) minimizes the maximal cost of any of the K disjoint paths. 

Exemplified GAMS models for both problems are defined. For solving the  

NDRP-Sum and NDRP-Max problems we propose the subgraphs generating-based 

algorithm (SGDP). Some experimental results with a discussion of the complexity 

and accuracy of the algorithm are shown in detail. Moreover, we show how to use 

modifications of the Busacker-Gowen and Edmonds-Karp minimal-cost flow 

algorithms to solve problems of the node-disjoint paths case. 

Presented applications and examples of methods being described concern military 

applications, but these methods are interdisciplinary. 

 Chapter 4 deals with models and algorithms for the nonlinear optimization 

problem of multi-objects movement scheduling to synchronize their movement 

(MS problem) as well as properties of the presented algorithms. For synchronous 
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movement, two categories of criteria are defined: the time of movement and 

"distance" of K>1 moved objects from the movement pattern. Similarities and 

differences between defined problems and the classical tasks scheduling problem 

in parallel processors are shown. Two algorithms for synchronous movement 

scheduling are proposed and their properties are considered. One of the 

algorithms is based on the dynamic programming approach and the second one 

uses approximation techniques. Moreover, we formulated the multicriteria 

movement synchronization scheduling problem (2CMSS problem). The model 

consists of two parts: (1) node-disjoint path planning visiting specified nodes for K 

objects with a given vector of intermediate nodes for each one (NDSP problem); (2) 

movement synchronization in intermediate nodes (MS problem). We defined the 

problem as a discrete-continuous, nonlinear, two-criterion mathematical 

programming problem. We proposed to use a two-stage algorithm to solve the 

2CMSS problem (as a lexicographic solution): at first we have to find the vector of 

node-disjoint shortest paths for K objects visiting intermediate nodes to set optimal 

paths under the assumption that we use maximal possible velocities on each arc 

belonging to a path for each object (the solution of the NDSP problem using 

algorithms described in chapter 3), and next we try to decrease values of velocities 

to optimize the second criterion (synchronization, solution of the MS problem 

using algorithms described in this chapter). Theoretical and experimental analysis 

of the complexity and accuracy of the algorithms as well as their practical 

usefulness are discussed. 

In chapter 5 the idea and model of command and control processes applied to 

the decision automata for attack, defence and marching on the battalion level as 

well as methods for movement simulation of individual and group objects are 

considered. The decision automata being presented replace battalion commanders 

in some simulator for military trainings and it executes two main processes: 

decision planning process and direct combat (or march) control. One of the 

elements of the decision planning process is an identification of the decision 

situation. Therefore, the model of the decision situation and two algorithms for 

decision situation identification are presented. The first one is based on a distance 

vector approach and the second one − on a multicriteria weighted graph similarity 

approach (MWGSP problem). Some numerical examples have been described. In 

the decision automata to march, the march planning process (containing: march 

organization determination and detailed march schedule determination) and the 

direct march control (containing: march simulation, identifying fault situations 

during a march simulation and automata reactions, velocity calculations and fuel 

consumption calculation) as well as techniques regarding automata 

implementation have been presented. Moreover, methods for movement 

simulation of individual and group objects based on the MODSIM simulation 
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language have been discussed. These discussions are supplemented by the 

presentation of the method for cooperating objects movement simulation and 

management in real simulation system like CGFs. 

Chapter 6 contains selected applications of described models and methods in 

real systems. We showed applications of methods described in chapters 3, 4 and 5 

for movement planning and simulation in Simulation-Based Operational Training 

Support System - Zlocien and Modelling & Simulation of Combat - MSCombat. Next, we 

presented using these methods in knowledge-based pattern recognition tools to 

support military mission planning and simulation (in systems Guru and CAVaRS). 

Additionally, applications of the presented models and methods in security 

(especially in early warning systems) and crisis management systems are 

discussed. 

Finally, remarks and conclusions concerning the described models, 

algorithms and related problems are presented. 

1.4. Authorship and Bibliography Remarks 

 The author of this book is the author of the majority of presented models and 

algorithms. Authorship concerns: all models and algorithms presented in chapters 

2.3, 3, 4, 5 and 6.1 (excluding: (1) computer implementation of the SGDP and DSP 

algorithms in chapter 3 − these implementations have been done by two 

supervised students; (2) the model of the decision situation in chapter 5.2.1 and (3) 

the method described in chapter 5.2.2). In the remaining cases the author of this 

book is the co-author. The majority of these models and algorithms are used in real 

systems: Zlocien, Guru, MSCombat, CAVaRS. These applications are described in 

separate chapters, especially in chapter 6. 

Detailed state of the art and bibliography concerning problems presented in 

the book are discussed in suitable chapters. However, the fundamental sources of 

information for the newest research results were the following scientific journals 

and conference proceedings: Computers & Operation Research, Networks, Journal of 

the ACM, Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, 

Conference on Computer Generated Forces and Behavioural Representation, IEEE 

Computational Intelligence for Security and Defence Applications Conference, Military 

Communication and Information Systems Conference and technical reports from 

selected research projects in which the author of this book has participated as  

a member or as the project manager: (Antkiewicz et al., 2000; 2009d; Guru, 2005; 

Tarapata, 1999c; 2008f; 2010h; Zlocien, 2002). 

In this book we consequently use separate notations in each chapter. However, in 

some cases we use the same notations as were previously used − in such a case we 

refer to these ones. 

 



2. Environmental Modelling for Knowledge-Based 

Decision Making and Simulation 

2.1. An Overview 

The terrain database-based model is being used as an integrated part of the 

military DSS and CGF systems as well as in civilian applications. Terrain data can 

be as simple as an array of elevations (which provides only a limited means to 

estimate mobility) or as complex as an elevation array combined with digital map 

overlays of slope, soil, vegetation, drainage, obstacles, transportation (roads, etc.) 

and the quantity of recent weather (Joe & Feldman, 1998). For example authors 

(Benton et al., 1995) describe HERMES (Heterogeneous Reasoning and Mediator 

Environment System), which allows the answering of queries that require the 

interrogation of multiple databases in order to determine the start and destination 

parameters for the route planner.  

One of the most popular representations of the terrain is a graph 

representation. There are a few approaches, in which the map (representing  

a terrain area) is decomposed into a graph. All of them first convert the map into 

regions of go (open) and no-go (closed). The no-go areas may include obstacles and 

are represented as polygons. A few methods of map representation is used, for 

example: visibility diagram, Voronoi diagram, straight-line dual of the Voronoi 

diagram, edge-dual graph, line-thinned skeleton, regular grid of squares, grid  

of homogeneous squares coded in a quadtree system, etc.  (Benton et al., 1995; 

Schiavone et al., 1995; Schiavone et al., 2000; Tarapata, 2003a).  

The polygonal representations of the terrain are often created in Database 

Generated Systems (DBGS) through a combination of automated and manual 

processes (Schiavone et al., 1995; Schiavone et al., 2000). It is important to say that 

these processes are computationally complicated, but are conducted before 

simulation (during the preparation process). Typically, an initial polygonal 

representation is created from the digital terrain elevation data through the use of 

an automated triangulation algorithm, resulting in what is commonly referred to 

as a Triangulated Irregular Network (TIN). A commonly used triangulation algorithm 

is the Delaunay triangulation. The definition of the Delaunay triangulation may be 

done via its direct relation to the Voronoi diagram of set S with an N number of 2D 

points: the straight-line dual of the Voronoi diagram is a triangulation of S.  
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The Voronoi diagram is the solution to the following problem: given set S with 

an N number of points in the plane, for each point pi in S what is the locus of points 

(x,y) in the plane that are closer to pi  than to any other point of S?  

The straight-line dual is defined as the graph embedded in the plane obtained 

by adding a straight-line segment between each pair of points of S whose Voronoi 

polygons share an edge. Fig. 2.1a depicts an irregularly spaced set of points S, its 

Voronoi diagram, and its straight-line dual (i.e. its Delaunay triangulation). 

The edge-dual graph is essentially an adjacency list representing the spatial 

structure of the map. To create this graph, we assign a node to the midpoint  

of each map edge, which does not bound an obstacle (or the border). Special nodes 

are assigned to the start and goal points. In each non-obstacle region, we add arcs 

to connect all nodes at the midpoints of the edges, which bound the same region. 

The fact that all regions are convex, guarantees that all such arcs cannot intersect 

obstacles or other regions. An example of the edge-dual graph is presented  

in Fig. 2.1b. 

The visibility graph, is a graph, which nodes are the vertices of terrain 

polygons and edges join pairs of nodes, for which the corresponding segment lies 

inside a polygon. An example is shown in Fig. 2.2. This idea is used to find optimal 

flight path in a segmented airspace (Kulas et al., 2008). 

 

 

  

(a)                        (b) 

Fig. 2.1. (a) Voronoi diagram and its Delaunay triangulation (Schiavone et al., 1995);  

(b) Edge-dual graph. Obstacles are represented by filled polygons 
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Fig. 2.2. Visibility graph (Mitchell, 1999). The shortest geometric path from the source node  

s to the destination t is marked by dashed bold line. Obstacles are represented by filled polygons 

 

The regular grid (mesh) of squares (or hexagons, e.g. in JTLS system (JTLS, 

1988)) divides terrain space into the squares with the same size and each square is 

treated as having homogeneity from the point of view of terrain characteristics (see 

Fig. 2.3).  

The grid of homogeneous squares coded in quadtree system divides terrain space 

into the squares with a heterogeneous size (Fig. 2.4). The size of the square results 

from its homogeneity according to terrain characteristics. An example of this 

approach was presented in (Tarapata, 2000d). This approach represents 

multiresolution terrain modelling which is also used for battlefield terrain 

modelling (Behnke, 2004; Cassandras et al., 2000; Chou et al., 1998; Davis et al., 2000; 

Magillo & Bertocci, 1998; Pai & Reissell, 1994; Tarapata, 2003a). This is a nature of 

hierarchical structure of military units and methods of their behaviours on  

a simulated battlefield. For a company level of units greater precision of terrain 

(environment) model is required than e.g. for the brigade level. Very good 

definition of multiresolution terrain is presented in (Magillo & Bertocii, 1998):  

"(...) The concept of multiresolution refers to the possibility of using different 

representations of a spatial entity, having different levels of accuracy and 

complexity. Multiresolution models allow trading off accuracy of representation 

and amount of data to be manipulated. Multiresolution representations of terrains 

are of great interest when large quantities of data are available and/or large areas 

are modeled (...)". 

In many existing simulation systems there are different solutions regarding 

terrain representation. In the JTLS system (JTLS, 1988) terrain is represented using 

hexagons with a size ranging from 1km to 16km. In the CBS system (CBS, 2001) 

terrain is similarly represented, but an additional vectoral-region approach is 

applied. In the Simulation-Based Operational Training Support System (SBOTTS) 

Zlocien (Najgebauer, 2004a; 2004b) and the System of Automatic Tools for Decision 

Support (SATDS) − Guru (Guru, 2005) a dual model of the terrain: (1) as a regular 
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network of terrain squares with square size 200mx200m, (2) as a road-railroad 

network, which is based on a digital map, is used (Tarapata, 2004b; 2004c). This 

model is presented in details in chapter 2.3. 

 
 

      
(a)             (b) 

Fig. 2.3. Examples of terrain representation in a simulated battlefield: (a) regular grid of terrain 
hexagons; (b) regular grid (mesh) of terrain squares and its graph representation with 8 neighbours 

 

 
(a)                                         (b) 

Fig. 2.4. (a) Partitioning of the selected real terrain area into squares of topographical homogeneous 
areas; (b) Determination of possible links between neighbouring squares and a description of 

selected vertices in the quadtree system for terrain area presented in (a) 

 

Advantages and disadvantages of terrain representations and their usage for 

terrain-based movement planning are presented in chapter 2.2. 

2.2. Terrain-Based Approaches for Paths Planning 

There are four main approaches concerning terrain representation that are 

used in a battlefield decision support and simulation for paths planning (Karr et al., 

1995): free space analysis, vertex graph analysis, potential fields and grid-based 

algorithms. 
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In the free space approach, only the space not blocked and occupied by 

obstacles is represented. For example, representing the centre of movement 

corridors with Voronoi diagrams (Schiavone et al., 1995) is a free space approach 

(see Fig. 2.1). The advantage of Voronoi diagrams is that they have efficient 

representation. Disadvantages of Voronoi diagrams are as follows: they tend to 

generate unrealistic paths (paths derived from Voronoi diagrams follow the centre 

of corridors while paths derived from visibility graphs clip the edges of obstacles); 

the width and trafficability of corridors are typically ignored; distance is generally 

the only factor considered in choosing the optimal path. 

In the vertex graph approach, only the endpoints (vertices) of possible path 

segments are represented (Mitchell, 1999). Advantages of this approach: it is 

suitable for spaces that have sufficient obstacles to determine the endpoints. 

Disadvantages are as follows: determining the vertices in "open" terrain is difficult; 

trafficability over the path segment is not represented; factors other than distance 

can not be included in evaluating possible routes. 

In the potential field approach, the goal (destination) is represented as an 

"attractor", obstacles are represented by "repellers", and the vehicles are pulled 

toward the goal while being repelled from the obstacles. Disadvantages of this 

approach: the vehicles can be attracted into box canyons from which they can not 

escape; some elements of the terrain may simultaneously attract and repel. 

In the regular grid approach, the grid overlays the terrain, terrain features are 

abstracted into the grid, and the grid rather than the terrain is analyzed. 

Advantages are as follows: analysis simplification. Disadvantages: "jagged" paths 

are produced because movement out of a grid cell is restricted to four (or eight) 

directions corresponding to the four (or eight) neighbouring cells; granularity (size 

of the grid cells) determines the accuracy of terrain representation. 

In many of the existing simulation systems there are different solutions 

regarding this subject (Benton et al., 1995; Campbell et al., 1995, Kreitzberg et al., 

1990; Longtin & Megherbi, 1995; Tarapata, 2003a). In the work of (Benton et al., 

1995) authors describe a combined on-road/off-road planning system that was 

closely integrated with a geographic information system and a simulation system. 

Routes can be planned for either single columns or multiple columns. For multiple 

columns, the planner keeps track of the temporal location of each column and 

insures they will not occupy the same space at the same time. In the same paper 

the Hierarchic Route Planner as the integrate part of the Predictive Intelligence Military 

Tactical Analysis System (PIMTAS) is discussed. In the paper (James et al., 1999) 

authors presented an on-going effort to develop a prototype for ground operations 

planning, the Route Planning Uncertainty Manager (RPLUM) tool kit. They apply 

uncertainty management to terrain analysis and route planning since this activity 

supports the commander’s scheme of manoeuvre from the highest command level 
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down to the level of each combat vehicle in every subordinate command. They 

extend the PIMTAS (Benton et al., 1995) route planning software to accommodate 

results of reasoning about multiple categories of uncertainty. Authors of the paper 

(Campbell et al., 1995) presented route planning in the Close Combat Tactical Trainer 

(CCTT). Kreitzberg (Kreitzberg et al., 1990) has developed the Tactical Movement 

Analyzer (TMA). The system uses a combination of digitized maps, satellite images, 

vehicle type and weather data to compute the traversal time across a grid cell. 

TMA can compute optimum paths that combine both on-road and off-road 

mobility, and with weather conditions used to modify the grid cost factors. The 

smallest grid size used is approximately 0.5 km. The author uses the concept of  

a signal propagating from the starting point and uses the traversal time at each cell 

in the array to determine the time at which the signal arrives at neighbouring cells. 

A lot of these systems use the Continuous Dijkstra’s Algorithm for route planning 

described by Mitchell in (Mitchell, 1999). In the simulation-based operational 

training support system SBOTSS Zlocien (Najgebauer, 2004a) a dual model of the 

terrain: (1) as regular network of terrain squares with a square size of 200mx200m, 

(2) as road-railroad network, which is based on a digital map in VPF format, is 

used. To find paths for units, modified shortest path algorithms (SPA) such as 

Dijkstra’s, A*, geometric SPA are used. Geometric SPA supplements two 

algorithms presented above (the hybrid shortest path algorithm is obtained) and it 

is used in case the size of the network is large (default is 10000 nodes, but it is  

a parameter set in a so-called calibrator of the simulation system (Antkiewicz et al., 

2006)). Modifications of mentioned algorithms deal with the following details:  

(a) paths determination in different configurations - (a1) from point (region) to 

point (region), (a2) visiting selected points (regions), (a3) omitting selected points 

(regions, obstacles), (a4) inside or outside a selected region, (a5) off-roads only, (a6) 

on-roads only, (a7) combined on- and off-roads and others; (b) if we do not set the 

region inside where we want to find the path then the algorithm itself, iteratively 

determines the rectangular region, which is based on a line linking the beginning 

and end points (nodes) of movement, to minimize computational time; (c) if we 

want to find an on-road path only, and there are no nodes of the road network 

inside the intermediate squares, then the algorithm may optionally find crossroads 

(nodes of the road network), which are nearest to squares inside that the path must 

cross. Detailed description of the movement planning algorithms used in SBOTSS 

Zlocien is presented in (Tarapata, 2004b; 2004c). Moreover, it is also presented in 

chapter 6.1. A special type of system for movement planning is Allied Deployment 

and Movement System (ADAMS) (Heal & Garnett, 2001), which has been 

developed in support of multinational force movement planning. This system 

is in wide use throughout NATO and nations for analysis, generation and 
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coordination of movement plans. The ADAMS provides the users with the 

tools to plan and manage deployment operations. 

Taking into account multiresolution terrain modelling this approach is also 

used for battlefield modelling and simulation. For example, in the papers 

(Tarapata, 2004b; 2010a; 2010c) a decomposition method, and its properties, which 

decreases computational time for path searching in multiresolution graphs has 

been presented. The goal of the method is not only computation time reduction 

but, first of all, using it for multiresolution path planning (to apply similarity in 

decision processes on a different command level and decomposing-merging 

approach). The method differs from very effective representations of terrain using 

quadtree (Kambhampati & Davis, 1986) because of two main reasons: (1) elements 

of quadtree, which represent a terrain have irregular sizes, (2) in a majority of 

applications quadtree represents only binary terrain with two types of region: open 

(passable) and closed (impassable). Hence, this approach is very effective for 

mobile robots, but it is not adequate, for example, to represent the battlefield 

environment (Tarapata, 2003a). 

Some models and algorithms for terrain-based movement planning are 

considered in detail in chapter 3. 

2.3. Terrain Model in the Zlocien System as an Example of Battlefield 

Environment Model 

The terrain (environment) model S0, which we use as a battlefield model in 

the Zlocien system (Najgebauer, 2004a, 2004b) is based on the digital map in VPF 

format. The model is twofold: (1) as a regular network Z1 of terrain squares, (2) as  

a road-railroad network Z2 and it is defined as follows (Tarapata, 2004c; 2004d): 

= 1 2( ) ( ), ( )OS t Z t Z t        (2.1) 

The regular grid of squares Z1 (see Fig. 2.3b) divides terrain space into 

squares with the same size (200m×200m) and each square is homogeneous from 

the point of view of terrain characteristics (degree of slowing down velocity, ability 

to camouflage, degree of visibility, etc.). This square size results from the fact that 

the lowest level of modelled units in SBOTSS Zlocien is a platoon and 200m it is 

approximately the width of the platoon front during attack. The Z1 model is used 

to plan off-road (cross-country) movement e.g. during attack planning. In the Z2 

road-railroad network (see Fig. 2.5) we have crossroads as network nodes and 

section of the roads linking adjacent crossroads as network links (arcs, edges). This 

model is used to plan fast on-road movement, e.g. during march (redeployment) 

planning and simulation. Movement planning and simulation methods in Zlocien 

system using Z1 and Z2 models are described in chapter 6.1. 
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Models Z1 and Z2 are integrated. This integration gives possibilities to plan 

movement taking into account both models. It is possible, because each square of 

terrain contains information about fragments of road inside this square. On the 

other hand each fragment of road contains information on squares of terrain, 

which they cross. Hence, the route for any object (unit) may consist of sections of 

roads and squares of terrain. It is possible to get off the road (if it is impassable) 

and start off-road movement (e.g. omit impassable section of road) and afterwards 

returning to the road. Conversely, we can move off-roads (e.g. during attack), 

access a section of road (e.g. any bridge to go across the river) and then return back 

off-road (on the other riverside). The characteristics of both terrain models depend 

on: time, terrain surface and vegetation, weather, the time of day and season of the 

year, opponent and own destructions (e.g. destruction of the bridge, which is 

element of road-railroad network) (see Table 2.1 and Table 2.2). 

The formal definition of the regular network of terrain squares Z1 is as 

follows (see Fig. 2.3b): 

 = Ψ1 1 1( ) , ( )Z t G t                                                                    (2.2) 

where G1 defines Berge's graph1 describing the squares network structure, 

= Γ1 1 1,G W  , 1W  - set of graph’s nodes  (terrain squares); 12:
11

W
W →Γ  - function 

describing for each nodes of the G set of adjacent (direct successors) nodes 

(maximal 8 adjacent nodes); Ψ = Ψ ⋅ Ψ ⋅ Ψ ⋅ Ψ ⋅

11 1,0 1,1 1,2 1, ( ) { ( , ), ( , ), ( , ),..., ( , )}LWt t t t t  - set of 

functions defined on the graph’s nodes (depending on t). 

One of the functions of Ψ1 ( )t  is the function of slowing down velocity 

FSDV(n,…), ∈ 1n W , which describes slowing down velocity (as a real number 

from [0,1]) inside the n-th square of the terrain, 

 1: [0,1]FSDV W T Veh Meteo YearS DayS× × × × × →   (2.3) 

where: T – set of times, Veh – set of vehicle types, Veh ={Veh_Wheeled, 

Veh_Wheeled-Caterpillar, Veh_Caterpillar}; Meteo – set of meteorological 

conditions, YearS – set of the seasons of year, DayS – set of the times of day.  

The function FSDV is used to calculate crossing time between two squares of 

terrain. Other functions (as subset of )( 
1

tΨ ) described on the nodes (squares) of G1 

and essential from the point of view of trafficability and movement are presented 

in Table 2.1. 

 

                                                 
1 Berge's graph is such a directed graph which has at most one arc between each ordered 

pairs of nodes. One of the formal definitions is presented in (Korzan, 1978). 
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Table 2.1. The most important functions described on the terrain square (node of G1) 

Description of the function Definition of the function 

Geographical coordinates of node (centre of square) 3

1
:FWSP W R→  

Ability to camouflage in the square 
1

: [0,1]FCam W T× →  

Degree of terrain undulation in the square 
1

: [0,1]FUnd W →  

Subset of the node’s set of Z2 network, which are located inside 

the square 

2

1 2 1
: 2

W
FW OnW W →  

 

 The formal definition of the road-railroad network Z2 is following (see Fig. 

2.5): 

ζ= Ψ2 2 2 2( ) , ( ), ( )Z t G t t       (2.4) 

where G2  describes Berge's graph defining structure of road-railroad network, 

=2 2 2,G W U , 2W - set of graph’s nodes  (crossroads); ⊂ ×2 2 2U W W  - set of graph 

G2 arcs (sections of roads); 
22 2,0 2,1 2,( ) { ( , ), ( , ),..., ( , )}LWt t t tΨ = Ψ ⋅ Ψ ⋅ Ψ ⋅  - set of functions 

defined on the graph’s G2 nodes (depending on t); ( ) ( ){ }ζ ζ

=

= ⋅

2
2 2, 1,

,i i IG
t t  - set of 

functions defined on the graph’s G2 arcs (depending on t).  

 Functions (as subset of Ψ2 ( )t  and ζ 2 ( )t ) are presented, which are essential 

from the point of view of trafficability and movement, described on the nodes and 

arcs of G2 in Table 2.2. One of the most important functions is slowing down 

velocity function FSDV2(u,…), 2
Uu∈  which describes slowing down velocity (as 

real number from [0,1]) on the u-th arc (section of road) of the graph: 

22 : [0,1]FSDV U T Veh Meteo YearS DayS× × × × × →   (2.5) 

 

    
(a)         (b) 

Fig. 2.5. Road-railroad network Z2 (a) and its graph model G2 (b) 
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Table 2.2. The most important functions described on the crossroads and on part of the roads (G2) 

Description of the function Definition of the function 

Geographical coordinates of node (crossroad) 3

2
2 :FWSP W R→  

Node from Z1, which contains node from Z2 2 1 2 1
:FW OnW W W→  

Subset of set of the nodes of Z1 network, which contains the arc 1

2 1 2
: 2

W
FU OnW U →  

Degree of terrain undulation on the arc 
2

: [0,1]FUnd U →  

Arc length 
2

:FLen U R
+

→  

 

For movement planning models in Zlocien system, described in chapter 6.1 

and in (Tarapata, 2004b; 2004c), we construct some temporary network Sz: 

{ }1 2 2 1 2 3, ( ) ( ), ( ) , ,z zS G t t t l l lζ= Ψ ∪ Ψ ∪     (2.6) 

where: Gz – Berge's graph describing structure of the temporary network (Fig. 2.6), 

,z z zG W U=        (2.7) 

Wz= W1∪W2 – set of graph’s Gz nodes, W1 defined in (2.2), W2 defined in (2.4); 

1 2 3
z z zU W W U U U⊂ × = ∪ ∪  – set of graph’s Gz arcs, U2 described in (2.4) and  

( ){ }1 1 1 1, : ( )U a b W W b a= ∈ × ∈Γ      (2.8) 

' ''
3 3 3U U U= ∪         (2.9) 

  
( ){ }

'
3 1 2 2 1 1, : ( ) ( )U a b W W FW OnW b a= ∈ × ∈ Γ    (2.10) 

  
( ) ( ){ }

''
3 2 1 1 2 1, : )U a b W W b FW OnW (a= ∈ × ∈ Γ    (2.11) 

l1 – function which describes crossing time by an arc: 

  1 : {0}zl U R+

→ ∪        (2.12) 

l2 – function describing geometrical length of an arc: 

  2 : zl U R+

→         (2.13) 

l3 – function describing ability to camouflage on an arc: 

  3 : [0,1]zl U →        (2.14) 

 Let’s note that we determine values of l1, l2 and l3 in the moment T0, in which 

we plan the movement for each arc (a,b)∈Uz. Therefore, they depend on time but 

we omit it to simplify descriptions. Moreover, we accept following notations: 

met(T0)∈Meteo – meteorological conditions on the arc (a,b) in the moment T0; 

pr(T0)∈YearS – the season of the year inside the region in the moment T0; 

pd(T0)∈DayS – the time of the day inside the region in the moment T0;  

veh(p)∈Veh – type of the vehicle p. 
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 We define l1 function as follows:

(1 ( , )l a b

where: ( , )d a b – geometric distance between nodes 

( , ) ( ) ( ) ( ) ( ) ( ) ( )d a b x a x b y a y b z a z b= − + − + −

x(w), y(w), z(w) – describe coordinates of node 

(see Table 2.1) when w∈W

( ,( , ))slowdv id a b  – maximal velocity of the unit 

topographical conditions,

(

slowdv id a b v id FOP id a b

max( )v id  – maximal possible velocity of the unit 

parameters of the vehicles belonging to 

max( ) min ( )v id v p

ZVeh(id) – set of vehicles belonging to the 

vehicle p (resulting from 

( ,( , ))FOP id a b  – slowing down velocity function for the 

− Models and Algorithms for Knowledge-Based Decision Support and Simulation..

Fig. 2.6. Structure Gz of temporary network Sz 

unction as follows: 

)

( , )
,   when  ( ,( , )) 0

( ,( , ))( , )

,                         otherwise

slowd

slowd

d a b
v id a b

v id a bl a b




= 


∞

geometric distance between nodes a, b, 

( ) ( ) ( )

3 3 3
3( , ) ( ) ( ) ( ) ( ) ( ) ( )d a b x a x b y a y b z a z b= − + − + −

describe coordinates of node w (calculated using functions 

W1  or  FWSP2  (see Table 2.2) when w∈W

maximal velocity of the unit id on the arc (a,b) taking into account 

topographical conditions, 

)

max,( , ) ( ) ( ,( , ))v id a b v id FOP id a b= ⋅    

maximal possible velocity of the unit id resulting from technical 

parameters of the vehicles belonging to this unit, 

( )
( ) min ( )tech

p ZVeh id
v id v p

∈

=      

set of vehicles belonging to the id unit, vtech(p) – maximal velocity of the 

(resulting from its technical parameters), 

slowing down velocity function for the id unit on the arc 

and Simulation... 27 

 

,   when  ( ,( , )) 0v id a b ≠

  (2.15) 

3 3 3
( , ) ( ) ( ) ( ) ( ) ( ) ( )d a b x a x b y a y b z a z b   (2.16) 

(calculated using functions FWSP 

W2), 

taking into account 

  (2.17) 

resulting from technical 

  (2.18) 

maximal velocity of the 

unit on the arc (a,b), 
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( )

0 0 0 0
( )

2

( ) ( )

1

,( , )

2(( , ), , ( ), ( ), ( ), ( ))

,  when ,
( )

( , , ( ), ...) ( , , ( ), ...)

,  when ,
2 ( )

( , , ( ), ...)

p ZVeh id

p ZVeh id p ZPoj id

p ZVeh

FOP id a b

FSDV a b T veh p met T pr T pd T

a b W
ZVeh id

FSDV a veh p FSDV b veh p

a b W
ZVeh id

FSDV a veh p

∈

∈ ∈

∈

=

∈

+

∈

=

∑

∑ ∑i i

i

( )

2 1
( )

1 2

2 1
( )

( )

2 1

2 ( )

( ( ), , ( ), , , )

,  when ,
2 ( )

( ( ), , ( ), , , )

2 ( )

( , , ( ), , , )

,  when  ,
2 ( )

id

p ZVeh id

p ZVeh id

p ZVeh id

ZVeh id

FSDV FW OnW b veh p

a W b W
ZVeh id

FSDV FW OnW a veh p

ZVeh id

FSDV b veh p

a W b W
ZVeh id

∈

∈

∈






+



+ ∈ ∈

+

+ ∈ ∈

∑

∑

∑

∑

i i i i

i i i i

i i i i























(2.19)

 

Function l2 is defined as follows: 

2

( , ),    when 
(( , ))

,            otherwise       

zd a b (a,b) U
l a b

 ∈

= 
∞

    (2.20) 

Function l3 is defined as follows: 

0 0
1

2 1 0 0
2 1

3

2 00
1 2

2 0 2 0
2

,    when 
2

( )
,    when 

2 2(( , ))
( )

,    when 
2 2

( ) ( )
,    when ,

2 2

FCam(a,T ) FCam(b,T )
a,b W

FCam(FW OnW a ,T ) FCam(b,T )
a W ,b W

l a b
FCam(FW OnW b ,T )FCam(a,T )

a W ,b W

FCam(FW OnW a ,T ) FCam(FW OnW b ,T )
a b W

+

∈

+ ∈ ∈

=

+ ∈ ∈

+ ∈













(2.21) 

 

We use these functions in chapters 5.3 and 6.1. Similar terrain model is used in the 

SATDS – Guru (Antkiewicz et al., 2009c; Najgebauer, 2008a). 

In the Zlocien system some terrain classification method 

(Najgebauer & Tarapata, 2004d) for decision automata for an attack and defence on 

the tactical level which is based on the defined terrain model is also used. This 

method is one of the part of the first stage of automata described in (Antkiewicz et 

al., 2003; 2004a; 2004b; Najgebauer et al., 2007b) and in chapter 5.2, and it is based 
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on presented model of the terrain. The idea of the method is to estimate terrain 

region in which own and opposite units will operate to obtain one of the four of 

kinds of the terrain: go, slow go, no go, no move. The first kind of the terrain (go) is 

excellent for movement (e.g. plain terrain), the second one (slow go) is good for 

movement (e.g. soft-hilly terrain), the third kind of the terrain (no go) is poor for 

movement (e.g. hard-hilly terrain or mountainous terrain) and the last kind of the 

terrain (no move) describes impassable terrain (e.g. lakes, seas, high mountains). 

The region (action strip) in which own and opposite units will operate is divided 

into rectangular or trapezoidal subregions (each of these for subordinate unit). 

Inside each of the subregions and between adjacent subregions we determine 

shortest paths from the start to the end of the region (the start of the region is 

taking from the side of own units and the end of the region is taking from the side 

of opposite units). These paths are determined taking into considerations all 

characteristics having influence on movement in the subregions and between 

adjacent subregions (terrain topography, weather, the time of the day, season of 

the year). The movement planning algorithms use modifications of shortest paths 

algorithms (SPA) such as: Dijkstra’s SPA, Johnson’s SPA in thin networks, A* SPA, 

geometric SPA (see chapter 6.1.2). After this step we obtain square matrix with 

dimensions: number_of_subregions×number_of_subregions which elements , ,k l js ∈[0,1] 

equals relation between time on the shortest path from start of the region l to end 

of the region j and between minimal travel time from start of the region l to end of 

the region j inside the subregion k under ideal environmental conditions. 

Estimation kS  of the k-th region equals mean value from among , ,k l js . The region of 

the terrain is classified as go, slow go, no go, no move if estimation kS  of the region is 

not greater than some critical value (set as parameters of simulator to calibrate 

terrain classification, (Antkiewicz et al., 2006)). The kind of the terrain determined 

using described method is component of classification vector which define the 

decision situation in automata (Antkiewicz et al., 2003; 2004a; 2004b). On the basis 

of this vector the variants of decisions are generated and the optimal decision is 

selected. 
 

 

 

 

 

 

 

 

 

 

 

 

 



3. Models and Algorithms for Movement Planning  

3.1. Introduction 

Movement (paths, routing, motion) planning is an essential element in many 

applications (LaValle, 2006): transportation, computer networks, mobile robots, car 

navigation, virtual agents in computer games, etc. From the point of view of 

military application, explained in this monograph, it is very interesting. Object 

movement is an essential element of combat actions and it is related to manoeuvre 

planning of military detachments on the battlefield during battle as well as 

preparing for it. This process is very important from the point of view of 

simulating complex processes in military systems. It may have an effect on 

accuracy, adequateness, effectiveness and other characteristics of these systems. 

Redeployment planning and simulation of military objects is a basic problem 

especially in combat simulators or CGFs. As an inseparable part of CGF, modules 

for route planning based on the real-terrain models are used. They have 

submodules to generate digital terrain and for route planning they use processed 

terrain information. For example, in ModSAF (Modular Semi-Automated Forces) in 

module "SAFsim", which simulates the entities, units, and environmental processes 

the route planning component is located (Longtin & Megherbi, 1995). Other 

terrain-based path planning modules have been described in chapter 2.2. 

Many route planners in the literature are based on the off-line path planning 

algorithms: a path for the object is determined before its movement. These 

algorithms are divided into two groups (Zhan & Noon, 2000): label setting 

algorithms and label correcting algorithms. The following are exemplary algorithms of 

the label setting approach: modified Dijkstra’s algorithm (Dijkstra, 1959) with  

a priority queue represented by d-ary heap (O(AlogdV), where V – number of 

nodes of a graph, A – number of edges (or arcs) of a graph, { }max 2, /d A V=    ) 

proposed in (Tarjan, 1983), with priority queue represented by Fibonacci heap 

(O(A+V logV)) proposed in (Fredman & Tarjan, 1987), with buckets (Zhan & Noon, 

1998), symmetric Dijkstra's algorithm (Zhao, 1997), A* algorithm (average time 

proportional to O( V V⋅ )) (Korf, 1999). Very interesting group are geometric path 

planning algorithms (Mitchell, 1999) or its variants (Korf, 1999; Logan, 1997a; 

Logan & Sloman, 1997b; Rajput & Karr, 1994; Tarapata, 1999a; 2001; 2003a; 2004a; 

Undeger et al., 2001). As label correcting algorithms we can apply: Bellmann-Ford’s 

algorithm with complexity O(VA), Pallottino algorithm (Pallottino & Scutella, 
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1998), PDM algorithm or others (Gabow-Tarjan’s algorithm (Gabow & Tarjan, 1989) 

with complexity O( log( )VA VW  where W is the largest absolute weight of edges) 

or the algorithm presented in (Ahuja et al., 1988) (O( logA V W+ ))). 

For finding all-pairs shortest paths we can apply V times (for each node) the 

modified Dijkstra’s algorithm (O(VAlogdV)), Johnson’s algorithm in sparse 

networks (Johnson, 1977) (O(V2logV+VA)) or algorithms in DAGs (directed acyclic 

graphs) e.g. the Bellman algorithm (O(V+A)). For example, A* has been used in  

a number of Computer Generated Forces systems as the basis of their component 

planning, to plan road routes (Campbell et al., 1995), to avoid moving obstacles 

(Karr et al., 1995), to avoid static obstacles (Rajput & Karr, 1994) and to plan 

concealed routes (Longtin & Megherbi, 1995). Moreover, the multicriteria approach 

to the path determined in CGF systems is often used. Some results of selected 

multicriteria paths problem and analysis of the possibility to use them in CGF 

systems are described, e.g. in (Tarapata, 2007d). A very extensive discussion 

related to geometric shortest path planning algorithms was presented by Mitchell 

in (Mitchell, 1999) (references consist of 393 papers and handbooks). The geometric 

shortest path problem is defined as follows: given a collection of obstacles, find an 

Euclidean shortest obstacle-avoiding path between two given points. Mitchell 

considers the following problems: geodesic paths in a simple polygon; paths in  

a polygonal domain (searching the visibility graph, continuous Dijkstra’s 

algorithm); shortest paths in other metrics (Lp metric, link distance, weighted 

region metric, minimum-time paths, curvature-constrained shortest paths, optimal 

motion of non-point robots, multiple criteria optimal paths, sailor’s problem, 

maximum concealment path problem, minimum total turn problem, fuel-

consuming problem, shortest paths problem in an arrangement); on-line 

algorithms and navigation without map; shortest paths in higher dimensions. 

The basic idea of the on-line path planning algorithms (Korf, 1999), in general, is 

that the object is moved step-by-step from cell to cell using a heuristic method. 

This approach is borrowed from robots motion planning (Behnke, 2004; 

Kambhampati & Davis, 1986; LaValle, 2006; Logan & Sloman, 1997; Undeger et al., 

2001). The decision about the next move (its direction, speed, etc.) depends on the 

current location of the object and environment status. Examples of on-line path 

planning algorithms (Korf, 1999): RTA* (Real-Time A*), LRTA* (Learning RTA*), 

RTEF (Real-Time Edge Follows), HLRTA*, eFALCONS. For example, the idea of RTEF 

algorithm (Undeger et al., 2001) is to let the object eliminate closed directions (the 

directions that cannot reach the target point) in order to decide on which way to go 

(open directions). For instance, if the object has a chance to realize that moving 

north and east will not let him reach the goal state, then it will prefer to go south or 

west. RTEF finds out these open and closed directions by decreasing the number of 

choices the object has.  
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However, the on-line path planning approach has one basic disadvantage: in this 

approach using a few criterions simultaneously to find an optimal (or acceptable) 

path is difficult and it is rather impossible to estimate, the moment of reaching the 

destination in advance. Moreover, it does not guarantee finding optimal solutions 

and even suboptimal ones may significantly differ from acceptable solutions. 

Organization of this chapter is as follows: chapter 3.2 contains decomposition 

and a multiresolution approach to path planning (based on the papers (Tarapata, 

2004a; 2010a; 2010c)), in chapter 3.3 models and algorithms for multiobjective 

(multicriteria) paths planning have been described (based on the papers (Tarapata 

1999a; 2000e; 2005c; 2007d)), chapter 3.4 contains analysis of specific disjoint paths 

planning models and algorithms (based on the papers (Tarapata 2006b; 2008e; 

2010g; 2011d)). Presented applications and examples of methods being described 

concern military applications but these methods are interdisciplinary. 

3.2. Decomposition and Multiresolution Paths Planning 

3.2.1. Description of the Problem 

Multiresolution paths (paths in multiresoultion environment model, see 

chapter 2.1) are very interesting from many applications point of view (mobile 

robots (Ahuja et al., 1988; Kambhampati & Davis, 1986; LaValle, 2006), battlefield 

simulation (Tarapata, 2003a), Computer Generated Forces (Petty, 1995), 

transportation or navigation (Chou et al., 1998). These are fields, which describe 

either the size of the environment or environment complexity (3D terrain). For 

example, in a battlefield decision support and simulation systems, planning 

models of movement based on a multiresolution environment (see definition in 

chapter 2.1) are used. This is the nature of a hierarchical structure of military units 

and methods of their behaviours on a simulated battlefield. For a company level of 

units, greater precision of terrain (environment) model is required than, for 

example, the brigade level (see details in chapter 3.2.6). 

The multiresolution paths problem is strongly connected with the problem of 

finding the shortest paths in large-scale networks. There are two main approaches 

to the shortest paths problem in large-scale networks: (a) to decompose a problem 

or environment (network, graph) in which we plan into smaller problems and then 

solve subproblems (Ahuja et al., 1988; Kambhampati & Davis, 1986; Pai & Reissell, 

1998); (b) to apply on-line algorithms which find and "merge" path cell-by-cell 

(Didjev et al., 1995; Korf, 1999; Tarapata, 2003a). The first group of approaches is 

called multiresolution methods. As local algorithms inside all of these methods, 

algorithms described in chapter 3.2.1 are used. For example, authors of 

(Kambhampati & Davis, 1986) present a method based on cell decomposition and 

partitioning space into a quadtree and then use a staged search (similar to A* 
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algorithm) to exploit the hierarchy. The goal of the approaches presented in (Pai & 

Reissell, 1998) is to navigate a robot without violating terrain dependent 

constraints decomposing the terrain with wavelet decomposition. Authors of the 

paper (Chou et al., 1998) present some Hierarchical Algorithm (HA), which is 

designed to look for paths in large networks representing road networks.  

Subchapter 3.2.3 presents a decomposition method (DSP – decomposition 

shortest paths) and its properties, which decrease computational time of path 

searching in multiresolution and large graphs. The goal of the method is not only 

computation time reduction but, most of all, using it for multiresolution path 

planning. Presented in chapter 3.2.6 is the method of how to use it for 

multiresolution battlefield modelling and paths planning. 

3.2.2. Definitions and Notations 

 Let graph ,G GG V A=  be given (see Fig. 3.1b) as a representation of an 

example of terrain squares (see Fig. 3.1a), where VG describes a set of nodes 

(squares of terrain), V= GV , AG describes a set of arcs, 

{ }, :  square  is adjacent to square G G GA x y V V x y⊂ ⊂ × , A= GA .  

For each arc , Gx y A∈  we have cost c(x,y) value as the crossing time (c(x,x)=0, 

c(x,y)=+∞ when , Gx y A∉ ). The problem is to find the shortest path from the 

source node s to the destination node t in G with the assumption that G is large in 

size and, simultaneously, to prepare the data structure (a graph) for 

multiresolution path planning. The idea of the approach is to merge geographically 

adjacent small squares (nodes belonging to V) into bigger squares (called b-nodes, 

see Fig. 3.1c) and to build b-graph G* (graph based on the b-nodes, see Fig. 3.1d) 

using a specific transformation. This transformation is based on the assumption 

that we set an arc (b-arc) between two b-nodes * *,G Gx V y V⊂ ⊂  when two such 

nodes as ∈ ∈

* *,x x y y exist and that , Gx y A∈  (x and y are called "border" nodes). 

Formal definition of the graph G* is as follows: * * *,G GG V A= , 

* * * *
1 2{ , , ..., }G nV x x x=  − set of b-nodes, =

* ,GV n
 

=

* ,GA m
 

*
1 2{ , ,..., }

ii i i im Gx x x x V= ⊂  and 

each *
ix , 1,i n=  generates subgraph of G, 

{ }
* * * * *

*, *
, : ,G G G G

x x y y
A x y V V x y A

∈ ∈

= ⊂ × ∃ ∈     (3.1) 

Let us note that parameter dn (length of the b-node side, see Fig. 3.1c) may be used 

instead of parameter n for creating graph G* and it may be computed as follows: 

/dn V n=  when  ( )
2mod 0V dn = . 
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Fig. 3.1. Principles of G* creating. Regions (squares) with black colour are impassable.  

a) Terrain space divided into a regular-size grid; b) Grid graph as a representation of terrain 

squares from a), only north-east-south-west arcs are permitted; c) Merging geographically adjacent 

small squares from b) into n=16 b-nodes (big squares); d) b-graph G* for squares merging from c) 

with marked shortest s-t path in G* (an edge represent two arcs with opposite directions) 

 

The cost of the b-arc * * *, Gx y A∈  is set as *min * *( , )c x y  and *max * *( , )c x y : *min * *( , )c x y  

is represented by the cost vector of the shortest of the shortest paths from any node 

belonging to x* to any node belonging to y* for each predecessor z* of x*. This is  

a vector, because the cost from x* to y* depends on the node, from which we 

achieve x* (therefore, for each predecessor of x* we have a cost value, see Fig. 3.2). 

This cost is calculated inside the subgraph built on the nodes belonging to x*, y* 

and z*. Cost *max * *( , )c x y  is represented by the cost vector of the longest of the 

shortest paths from any node belonging to x* to any node belonging to y* for each 

predecessor z* of  x*.  

For further discussion we will use the following notations:  
* *( , )W x y  − subset of nodes belonging to x*, which are adjacent ("border") to 

any node of y*, { }
* * *

*
( , ) : , G

y y
W x y x x x y A

∈

= ∈ ∃ ∈ ,  

D(x,y) – set of paths between nodes x and y in graph G; 
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0 1 ( ( , ))( , ) ( , ,..., )l d x yd x y x x x x y= = =  − element of D(x,y), 1
0, ( ( , )) 1

,i i G
i l d x y

x x A
+

= −

∀ ∈ ,  

( ( , )) 1

1
0

( ( , )) ( , )
l d x y

i i
i

L d x y c x x
−

+

=

= ∑  − cost of path d(x,y) from x to y; 

min * * * *( ( , ), ( , ))D W x z W y v  − set of shortest paths in G between nodes 

belonging to * *( , )W x z  and  * *( , )W y v : 

( )

min * * * *

min * * * *
min

( , ) ( , )

( , ) ( , ) : ( , ), ( , ),
( , ), ( , )

                                ( ( , )) min ( ( , ))
d x y D x y

d x y D x y x W x z y W y v
D W x z W y v

L d x y L d x y
∈

 ∈ ∈ ∈ 
=  

=    
*min * *( , )c x y  − minimal of minimal cost vector for arc * * *, Gx y A∈  from x* to y*, 

{ }

*min * * *min * *
* * * *: *, * *

( , ) ( , )z z v V v x A
c x y c x y

∈ ∈ ∈

= , *min * *
* ( , )zc x y  − minimal of minimal cost 

from x* to y* when the predecessor of  x* is  z*, 

( ) ( )

min min

*min * *
*

( , ) ( *, *), ( *, *) ( , ) ( *, *), ( *, *)
( , ) min ( ( , )) min ( ( , ))z

d D W x z W x y d D W x y W y x
c x y L d L d

⋅ ⋅ ∈ ⋅ ⋅ ∈

= ⋅ ⋅ + ⋅ ⋅  (3.2) 

*max * *( , )c x y
 − maximal of minimal cost vector for arc * * *, Gx y A∈  from x* to 

y*, 
{ }

*max * * *max * *
* * * *: *, * *

( , ) ( , )z z v V v x A
c x y c x y

∈ ∈ ∈

= , *max * *
* ( , )zc x y

 − maximal of minimal cost 

for arc * * *, Gx y A∈  when the predecessor of x*  is  z*, 

( ) ( )

min min

*max * *
*

( , ) ( *, *), ( *, *) ( , ) ( *, *), ( *, *)
( , ) max ( ( , )) max ( ( , ))z

d D W x z W x y d D W x y W y x
c x y L d L d

⋅ ⋅ ∈ ⋅ ⋅ ∈

= ⋅ ⋅ + ⋅ ⋅  (3.3) 

D*(x*,y*) − set of paths between nodes x* and y* in graph G*, 

( )
* * * * * * * * *

0 1 2 *( *( *, *))( , ) , , , ..., l d x yd x y x x x x x y= = =

 
− element of D*(x*,y*) and 

* * * *

* * *
1

0, ( ( , )) 1

,i i G
i l d x y

x x A
+

= −

∀ ∈ , 

*min * * *( ( , ))L d x y
 − cost of path d*(x*,y*) from x* to y*, which is based on 

*min * *( , )c x y , 

* * * *

* *
0 1

( ( , )) 1
*min * * * min * * min * *

0 1 1( )
1

( ( , )) ( , ) ( , )
i

l d x y

i ip x x
i

L d x y c x x c x x
−

−

+

=

= + ∑   (3.4) 

where *
0( )p x  denotes the predecessor of *

0x  in G* representing the "direction", from 

which we start path planning in *
0x  (we use this interpretation, for example when 

* * *, Gx y A∈  and * *,  x y  represent internal nodes of path d*(v*,z*); then 

*

*min * * * min * *

( )
( ( , )) ( , )

p x
L d x y c x y=

 
and p(x*) denotes the predecessor x* on path d*(v*,z*)). If 

the information about *
0( )p x  is unimportant then * *

0 1( )p x x= . Let us note that the 
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interpretation of *
0( )p x  allows us to write (3.4) as the sum of length of parts of path 

* * *( , )d x y  as follows: 

* * * * * * * *

*

( ( , )) 1 ( ( , )) 1
*min * * * *min * * * min * *

1 1( )
0 0

*
1*

*
1

( ( , )) ( ( , )) ( , )

,  0
( )

,    0

i

l d x y l d x y

i i i ip x
i i

i

i

L d x y L d x x c x x

x i
p x

x i

− −

+ +

= =

−

= =

 >
= 

=

∑ ∑
 (3.5) 

Without the presented interpretation of *
0( )p x  the calculation of the length of  

* * *( , )d x y  as the sum of the length of its parts like in (3.5) would be impossible. We 

can define *max * * *( ( , ))L d x y  as the cost of path d*(x*,y*) from x* to y*, which is based 

on *max * *( , )c x y , analogically to (3.4): 

* * * *

* *
0 1

( ( , )) 1
*max * * * max * * max * *

0 1 1( )
1

( ( , )) ( , ) ( , )
i

l d x y

i ip x x
i

L d x y c x x c x x
−

−

+

=

= + ∑   (3.6)  

Finally, we denote with *max * *( , )d x y  the shortest path in G* from x* to y* with 

*max * *( , )c x y  cost function and with *min * *( , )d x y the shortest path in G* from x* to y* 

with *min * *( , )c x y  cost function. For *max * *( , )d x y  and *min * *( , )d x y  following 

conditions are satisfied:  

* *

*max *max * max *

( , ) ( , )
( ( , )) min ( ( , ))

d D
L d L d

⋅ ⋅ ∈ ⋅ ⋅

⋅ ⋅ = ⋅ ⋅ ,      
* *

*min *min *min *

( , ) ( , )
( ( , )) min ( ( , ))

d D
L d L d

⋅ ⋅ ∈ ⋅ ⋅

⋅ ⋅ = ⋅ ⋅ ,  

where D*(⋅,⋅) describes the set of paths in G*  between pairs of b-nodes. 

 

 

Fig. 3.2. The interpretation and calculation method of *min
( , )Ec A B  and *max

( , )Ec A B  as components of 

*min
( , )c A B  and *max

( , )c A B ; calculation of *min
( , )Bc A B  and *max

( , )Bc A B  in accordance. As "border" nodes 

of A to B we have W(A,B)={3,4} 
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*min *min *min( , ) ( , ), ( , )E Bc A B c A B c A B=  

*max *max *max( , ) ( , ), ( , )E Bc A B c A B c A B=  

W(A,E)={1,3}; W(A,B)={3,4}; W(B,A)={5,6}; 

( )

( )

min

min

*min

( , ) ( , ), ( , )

( , ) ( , ), ( , )

( , ) min ( ( , ))

                  min ( ( , )) 0 5 5

E
d D W A E W A B

d D W A B W B A

c A B L d

L d

⋅ ⋅ ∈

⋅ ⋅ ∈

= ⋅ ⋅ +

+ ⋅ ⋅ = + =

 

( )

( )

min

min

*max

( , ) ( , ), ( , )

( , ) ( , ), ( , )

( , ) max ( ( , ))

                  max ( ( , )) 6 7 13

E
d D W A E W A B

d D W A B W B A

c A B L d

L d

⋅ ⋅ ∈

⋅ ⋅ ∈

= ⋅ ⋅ +

+ ⋅ ⋅ = + =
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3.2.3. Decomposition Shortest Paths Algorithm (DSP) 

3.2.3.1. The idea of the DSP algorithm 

The branch-and-bound (decomposition) algorithm for shortest paths finding 

(DSP algorithm) consists of two main phases: (1) constructing graph G* (steps 1-3); 

(2) finding the path from source s to destination t (steps 4-5). It uses Dijkstra’s 

algorithm with k-ary heaps ( { }max 2, /k A V=    ) (because graph G is sparse and  

k-ary heap is very effective (Tarjan, 1983)) and may be presented in 5 steps: 

1. merge nodes from graph G (Fig. 3.1b) into n big nodes (b-nodes) as subgraphs 

of G (Fig. 3.1c) (n is the parameter of the algorithm); 

2. set each of the subgraphs obtained in step 1 as b-nodes and set b-arcs in this 

graph as described by (3.1) obtaining graph G* (Fig. 3.1d); 

3. (a) for each * *
Gx V∈

 and for each * *
Gz V∈

 such that * * *, Gx z A∈ to determine the 

shortest path trees (SPTs) inside x* for each * *( , )x W x z∈  as a source node; 

(b) calculate costs *min( , )c ⋅ ⋅  and *max( , )c ⋅ ⋅  for each arc of G* using (3.2)-(3.3); 

4. find the shortest path * min * *( , )s td x x  and *max * *( , )s td x x  in G* with cost functions 

*min( , )c ⋅ ⋅  and *max( , )c ⋅ ⋅  (lower and upper restriction on length of the path from s 

to t) between such pairs * *,s tx x  of  b-nodes that * *,  s ts x t x∈ ∈  (see Fig. 3.1d); 

5. find shortest path from s to t (s-t path) inside subgraph generated by nodes of G 

belonging to b-nodes of *min * *( , )s td x x  ( *max * *( , )s td x x ):  

a) if * *
s tx x=  then to find the shortest s-t path inside the subgraph of G generated 

by nodes belonging to * *
s tx x=  (use paths calculated in step 3a); 

b) otherwise, if * *
s tx x≠ , then s-t path may be found constructing the DAG with 

arcs directed from s to subset * * *
0 1( , )sW x x x= , then from * * *

0 1( , )sW x x x=  to 

* *
1 0( , )W x x , then from * *

1 0( , )W x x  to * *
1 2( , )W x x  etc. and lastly − from 

* * * * * * * *

* *

( ( , )) ( ( , )) 1
( , )

s t s tl d x x l d x x
W x x

−

 to t (Fig. 3.3). The arc cost in DAG, is between nodes x 

and y, and the length of the shortest path is calculated in step 3a. 

 

 

. . . .
s

t  

Fig. 3.3. Constructing DAG for the last step of the DSP algorithm. Firstly, arcs link s with nodes 

inside *

sx  bordering on *

1
x , then link previous nodes with nodes of *

1
x  bordering on *

sx , etc.) 
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Fig. 3.4. An example of the path found in the DSP algorithm 

 
An example of the path found by the DSP algorithm is presented in Fig. 3.4. 

Base mesh of nodes (from graph G) is drawn using the smallest square scale.  
B-nodes of graph G* are drawn using the smallest gray circles (single b-node 
consist of 4x4 nodes from G), big gray circles denote path in G and big black circles 

− path in G*. 

3.2.3.2. Properties of the DSP algorithm 

The DSP algorithm has some interesting properties. Theorem 3.1 shows lower 

and upper restriction on the length of the shortest path in G using the DSP 

algorithm. Theorem 3.2 shows the time and space complexity of the DSP 

algorithm. 

Theorem 3.1 

Let * *
1'( , ( , ))sL s W x x  denote the length of the longest of the shortest paths from s to any node 

of * *
1( , )sW x x  and *

1x  denote the direct successor of *
sx  on the path from *

sx  to *
tx . For each 

s, t∈VG and * * *,s t Gx x V∈ , * *
s tx x≠  such that * *,  s ts x t x∈ ∈  the following formula is fulfilled: 

 *max *max * * * * min *min *min * *
1( ( , )) '( , ( , )) ( ( , )) ( ( , ))s t s s tL d x x L s W x x L d s t L d x x+ ≥ ≥  (3.7) 

 

Proof is presented in Appendix 3.A.1. Conclusions resulting from Theorem 

3.1: 

• if path from s to t exists in the G graph then path from *
sx  to *

tx  exists in the G* 

graph and the DSP algorithm will find it; 

• if G=G* then the lower restriction equals the upper restriction (the DSP 

algorithm gives an optimal solution); otherwise, length min( ( , ))L d s t  of the 

shortest s-t path is restricted by the left and the right side of the inequality (3.7). 
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Theorem 3.2 

Let digraph G=(VG,AG), s,t∈VG, +

→: Gc A R  and cardinal n representing the number of  

b-nodes in G* be given. Then the total time of the DSP algorithm (for preparing G* and 

finding shortest s-t path) is equal 

( )
3 / log ( / ) logk kO V n V n n n+      (3.8)  

and the space ( )
3 /O V n A V+ + , where { }max 2, /k A V=    . 

Proof: 

We must determine the complexity of each step of the algorithm. 

Step 1. It can be done in O(V) time; 

Step 2. Each b-node has at most /V n    nodes and ( )' 4 / 1N V n = − 
 

"border" nodes. For each of the "border" nodes we must check at most 4 nodes of 

its neighbours to set the arc in G*, we have to repeat it n times for each b-node, thus 

it requires time ( )/O n V n ; 

Step 3a. For a single b-node we have ( )' 4 / 1N V n = − 
 border nodes and for 

each of them we have to determine the shortest paths tree using Dijkstra’s 

algorithm with k-ary heap, { } { }max 2, / max 2, 4 / 4k A V V V= ≈ =       , thus for  

a single b-node it takes time ( ) ( )4 / 1 ( / ) log ( / )kV n O V n V n  − ⋅ ⋅ 
. We calculate it n 

times and obtain a complexity of this step as follows: ( )
3 / log ( / )kO V n V n ; 

Step 3b. For a single b-node we have two cost vectors *min( , )c ⋅ ⋅ , *max( , )c ⋅ ⋅  each of 

them having at most 4 components. Calculation of each component takes time 

proportional to 2 / /V n V n       , thus the total time is proportional to 

8 2 /n V n⋅   = O(V); 

Step 4. G* has n nodes and at most 4n arcs, thus calculation of the shortest 

path in G* using Dijkstra’s algorithm with k-ary heap takes time ( )logkO n n , 

{ }max 2, 4 / 4k n n= =   ; 

Step 5. In the worst case * * *( , )s td x x  may have n b-nodes. By building DAG we 

can use only 2 /V n    nodes and ( )

2

/ /V n V n=        arcs inside each b-node and 

( )

2

/ /V n V n=        arcs between b-nodes (Fig. 3.3), thus number of arcs in the 

worst case is equal 2 /n V n   . Using Bellman’s algorithm (Bellman, 1958) for the 

shortest path in DAGs complexity is ( )/O n V n V+ . 
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Let us note the 3rd step is a "bottleneck" of the algorithm (if n→1 then 

3 3/ log ( / ) logk kV n V n V V→ ) and 4th step (if n→V then log logk kn n V V→ ). 

Hence, the total time complexity of the DSP is ( )
3 / log ( / ) logk kO V n V n n n+ . 

Space required is determined by step 3a; SPT for a single source node inside 

each b-node contains at most /V n    nodes (this is the number of nodes inside  

a single b-node), inside each b-node we determine SPT ( )4 / 1V n  −   times (for 

each border nodes as the root of SPT) and we have n b-nodes, hence it requires 

space proportional to 3( / )O V n . Moreover we need space for graph G (O(A+V)) 

and G* (O(4n+n)), hence it requires O(A+V) space. Thus the total space required by 

the DSP algorithm is 3( / )O V n A V+ + . 

♦  

3.2.4. Experimental Analysis of the DSP Algorithm 

To examine the DSP algorithm we have used two models of the mesh S 

network with dimension 200x200 nodes and a structure similar to the one from 

Fig. 3.1b (only north-south-north, east-west-east arcs are permitted for each node, 

hence maximal number of arcs between two nodes is equal 4), 

(Tarapata & Godlewski, 2011c): S1 − random arcs from network S have been 

cancelled and for each of the arc the random cost from the range [ ]1, 4  has been set 

(after all the network has 119574 arcs); S2 − all possible arcs between nodes  have 

been conducted and for each of the arc random cost from the range [ ]1, 4  has been 

set (after all, network have had 159200 arcs). Exactly 500 paths for randomly 

generated s-t pairs using the DSP and A* algorithms have been determined. 

Results for S1 are presented in Table 3.1 and for S2  − in Table 3.2. 

 

Table 3.1. Experimental computation time and accuracy of the DSP algorithm for the S1 network 

dn Number  
of  b-nodes  

(n) 

Number of  
b-arcs  
(m) 

G* 
generation 

time [s] 

Time of DSP 
[s] 

Time of A* 
[s] 

Error  
[%] 

cmin cmax cmin cmax cmin cmax 
1 39 843 119 574 3.95 107.12 106.01 38.74 36.48 0 0 

2 12 978 43 024 1.93 30.31 32.14 34.49 36.69 6.44 12.21 

3 6 383 22 050 1.66 14.23 14.09 32.97 33.44 12.12 14.65 

4 3 791 13 202 1.39 9.06 8.32 34.32 31.67 16.75 14.88 

5 2 519 8 748 1.50 6.05 5.57 33.54 32.38 20.98 14.11 

10 748 2 384 2.66 2.90 2.15 32.00 33.40 25.22 9.77 

20 241 676 4.48 2.75 1.7 35.51 31.18 21.09 8.39 

50 60 140 10.65 7.16 5.52 32.64 33.00 15.46 4.41 

100 20 40 16.93 17.93 18.13 32.44 32.95 0.56 0.61 
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Table 3.2. Experimental computation time and accuracy of DSP algorithm for the S2 network  

dn Number  
of  b-nodes  

(n) 

Number  
of b-arcs  

(m) 

G* 
generation 

time [s] 

Time of DSP 
[s] 

Time of A* 
[s] 

Error  
[%] 

cmin cmax cmin cmax cmin cmax 
1 40 000 159 200 4.98 108.11 107.46 33.12 35.83 0 0 

2 10 000 39 600 1.89 25.92 26.08 37.17 35.19 12.68 9.85 

3 4 489 17 688 1.69 11.43 10.85 37.95 38.6 25.99 9.59 

4 2 500 9 800 1.8 6.62 6.43 36.18 36.77 27.86 7.75 

5 1 600 6 240 1.91 4.49 4.17 32.13 34.21 25.56 6.88 

10 400 1 520 3.38 3.15 2.04 37.72 32.82 19.99 5.45 

20 100 360 6.2 4.11 2.71 36.64 38.39 16.5 4.47 

50 16 48 14.74 9.59 7.43 36.93 34.38 18.32 2.5 

100 4 8 24.92 19.03 19.32 33.85 32.72 4.38 0.54 

 
Columns in Table 3.1 and Table 3.2 contain (from the left): length of the  

b-node side (see Fig. 3.1c for an interpretation), number of b-nodes, number of  

b-arcs, generation time of G* (total time for steps 1-3 of the DSP algorithm), total 

time of finding 500 paths by the DSP algorithm (total time for the steps 4-5 of the 

DSP algorithm, separately for cmin and cmax), total time of finding 500 paths with the 

A* algorithm (separately for cmin and cmax), Error=average absolute (in percent) 

difference between path lengths obtained from the DSP and optimal path lengths 

obtained from A* (separately for cmin and cmax). Results show that parameter n have 

a great impact on effectiveness and accuracy of the DSP algorithm. Both, extreme 

large and extreme small values of n, cause the deterioration of the DSP algorithm 

effectiveness and accuracy. Let us observe that for n=1 error of the algorithm is 

equal zero, but the computation time is significant greater than for A*. It results 

from the idea of the algorithm (G* has a single b-node and only step 5th is 

realized). From the analysis results, that the DSP is more accurate for cmax than for 

cmin. This property is described in (Tarapata & Godlewski, 2011c; Godlewski, 2010). 

 Because the most complex steps of the algorithm (steps 1-3, "bottleneck") are 

done only one time (we build the b-graph only one time – initial pre-processing) 

then if we compute a single-pair of the shortest path many times it allows us to 

amortize time of the "bottleneck". In Fig. 3.5 we present graphs of calculation time 

(represented by the number of dominating operations) for finding M shortest paths 

using the DSP algorithm and the Dijkstra’s algorithm between random pairs of 

nodes. It is easy to observe that the greater the value of n (with the same value of 

V) the smaller the number of shortest paths calculation to obtain a shorter time for 

the DSP algorithm than for the Dijkstra’s algorithm. For example, to obtain the 

same calculation time for the DSP and the Dijkstra’s algorithm for V=1024, n=4 we 

must find M*=17 shortest paths (for M<17 the Dijkstra’s algorithm is faster than 

DSP, otherwise the DSP algorithm is faster) and for V=1024, n=64 we must find 

only M*=3 shortest paths (for M<3 the Dijkstra’s algorithm is faster than the DSP, 

otherwise the DSP algorithm is faster). Taking this approach to the results given in 
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Table 3.1 for dn=5 we obtain the following data (for cmax): the time generation of G* 

is equal TG*=1.5 [s], computation times of finding 500 paths is equal 32.38 [s] for A* 

and 5.57 [s] for DSP; hence the average computation time for a single s-t shortest 

path calculation is equal: for DSP − TD=5.57/500=0.01114 [s], for A* − 

TA*=32.38/500= 0.06476 [s]. We obtain that for M*≥28 calculation time of M* 

shortest paths using A* is greater than using DSP, because * * * *M TA TG M TD⋅ > + ⋅  

that is ⋅ = > + ⋅ =28 0.06476 1.81328 1.5 28 0.01114 1.81192 . 

 

 

Fig. 3.5. Graphs of calculation time (represented by the number of dominating operations) for 

finding the M shortest paths using the DSP algorithm (continuous line) and the Dijkstra’s algorithm 

(dashed line) between random pairs of nodes (V=1024, n=4, n=16, n=64, n=256) 

 

Moreover, the comparison of the DSP with the Hierarchical Algorithm (HA) 

presented in (Chou et al., 1998) has been conducted using the S2 network 

(described at the beginning of this chapter). To understand the algorithm we 

present a short description of the HA. The Hierarchical Algorithm is designed to look 

for paths in large networks representing road networks. A road network in this 

model is divided into low level sub-networks (so-called micronetworks). If two 

nodes between which we find a path belonging to the same sub-networks then the 

path is looking for only in this sub-network (even then the optimal path uses nodes 

from other sub-networks). If two nodes belong to different sub-networks then the 

algorithm takes into consideration additional high level sub-network (so-called 

macronetwork, which is the sub-network of the original one). Each node from  
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a macronetwork belongs to one or more micronetworks. Micronetworks may 

identify the network of local roads and macronetworks may identify highways and 

express roads. Looking for the shortest path between nodes belonging to different 

sub-networks relies on looking for a path from the initial micronetwork (source 

node belongs to this network) to any node m of the macronetwork, finding a path 

inside the macronetwork and then finding a path inside the destination 

micronetwork (destination node belongs to this network). If a macronetwork 

contains more than one node, then we must decide which node (m) must be 

choosen. We consider two strategies to this selection: NearestHA and BestHA. In the 

NearestHA strategy we choose the nearest macronetwork's node to the 

source/destination node in the micronetwork. In the BestHA strategy we choose 

such a node from macronetwork, for which length of the paths being found is the 

shortest. Path planning between micronetworks may be done using only the 

macronetwork. 

In order to use HA we "cover" the S2 network with macronetwork G** (as mesh 

networks) with the length between macroarcs (arcs in the macronetwork) equals 

dn=5 (see Fig. 3.6). Exactly 500 paths for randomly generated s-t pairs using the 

DSP and the HA algorithms have been determined. Results presented in Table 3.3 

show that the HA is faster than the DSP, but the error of the HA is significantly 

greater than for the DSP. These results show the high sensitivity of these 

algorithms to parameters. Inappropriate parameter settings (e.g. n for the DSP and 

dn for the HA) lowers the quality of solutions. The DSP algorithm is more tolerant 

to the initial model of a network. Moreover, in order to have correct computations 

the HA requires both a whole initial graph and all micronetworks and 

macronetworks to be strongly connected. 

 
 

 

Fig. 3.6. Macronetwork G** constructed for dn=5 
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Table 3.3. The comparison of DSP (a) and Hierarchical Algorithm (b)  
a) 

dn Number  
of b-nodes  

(n) 

Number  
of b-arcs  

(m) 

G* 
generation  

time [s] 

Time of DSP  
[s] 

Time of A*  
[s] 

Error  
[%] 

cmin cmax cmin cmax cmin cmax 
4 2 500 9 800 1.8 6.62 6.43 36.18 36.77 27.86 7.75 

5 1 600 6 240 1.91 4.49 4.17 32.13 34.21 25.56 6.88 

10 400 1 520 3.38 3.15 2.04 37.72 32.82 19.99 5.45 

20 100 360 6.2 4.11 2.71 36.64 38.39 16.5 4.47 

 
b) 

dn G** 
generation 

time [s] 

Phase 
I time 

[s] 

Time of HA 
[s] 

Time of A*  
[s] 

Error  
[%] 

Nearest 
HA 

Best 
HA 

Nearest 
HA 

Best 
HA 

Nearest 
HA 

Best 
HA 

4 168.30 30.40 0.08 0.21 39.17 40.90 25.42 21.44 

5 105.70 15.63 0.09 0.19 39.32 41.54 28.65 22.68 

10 28.16 12.67 0.09 0.15 40.19 40.46 38.83 22.89 

20 7.80 39.40 0.08 0.63 38.58 39.04 44.60 19.30 

 
Shown below are the advantages of using the DSP algorithm for finding the  

all-pairs shortest paths in network G. We can formulate acceleration functions 

FDijk(V, n) and FJohn(V, n) as follows: 

( )
( , )

( , )

Dijk

Dijk

DSP

T V
F V n

T V n
=            

( )
( , )

( , )
John

John

DSP

T V
F V n

T V n
=   (3.9) 

where ( )DijkT V , ( )JohnT V , ( , )DSPT V n  denotes, respectively, experimental average times 

of finding the all-pairs shortest paths in G with V nodes using: V times Dijkstra’s 

algorithm with 4-ary heaps, Johnson’s algorithm for sparse networks (Johnson, 

1988), the DSP algorithm with n b-nodes. 

Let the grid network with V squares (nodes) be given. We can formulate the 

following optimization problem: to find such a cardinal n*, for which   

*

{1,..., }
( , ) max   ( , )

n V
F V n F V n

∈

=       (3.10) 

In Table 3.4 the experimental impact of V on n* and F(V,n*) is shown. The value of 

n* may be approximated by function * 0.341.87n V≈ ⋅ and acceleration functions: 
* 0.67( , ) 0.39DijkF V n V≈ , * 0.62( , ) 0.23JohnF V n V≈ , thus the average acceleration of DSP 

algorithm with relation to the Dijkstra’s and Johnson’s algorithm is ≅O(V0.65). 

 

Table 3.4. Experimental impact of the V on n* and  FDijk(V, n*), FJohn(V, n*) for the all-pairs shortest 

paths problem for V various numbers of nodes from G 

V 100 500 1 000 5 000 10 000 100 000 200 000 1 000 000 

n* 9 16 21 36 46 100 130 220 

FDijk(V,n*) 9 25 40 118 187 865 1 380 4 000 

FJohn(V,n*) 5 12 18 49 75 320 495 1 400 
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3.2.5. Parallelization of the DSP Algorithm 

The DSP algorithm can be very easily computed in parallel (Tarapata, 2010a). 

Because the DSP algorithm uses the Dijkstra’s shortest path (or A*) algorithms 

(s.p.a.) as local-searching one, thus it is required to take into consideration the 

known results of the parallelization of this algorithm and the other s.p.a. There are 

many papers dealing with the problem of parallelization of s.p.a. Authors of the 

paper (Paige & Kruskal, 1985) propose a parallel version of the Dijkstra's 

algorithm, which uses a global reduction to extract the minimum distance node 

and then partitions the set of neighbours of that node among multiple processors. 

Using a binary heap-structured priority queue, this scheme has a running time of 

( )/ logO A p k V V+ ⋅ ⋅ , where A and V are the number of edges (arcs) and nodes in 

the graph, p is the number of processors, and k is a constant representing the 

relative cost of communication vs. computation on the particular platform.  

A significant parallel speedup is possible only if /A p k≫ . Authors of the papers 

(Kumar et al., 1994, sect. 7; Grama et al., 2003, sect.10) show several approaches for 

parallelization of Dijkstra’s s.p.a., in which execution time Tp,Dijk of parallel the 

Dijkstra's algorithm using p processors is proportional to: 

, ( / ) log logp DijkT A p V V p= ⋅ +  for the hypercube structure of the parallel computation 

system and , ( / ) logp DijkT A p V V p= ⋅ +  for the mesh structure of the parallel 

computation system. Authors of the paper (Pantziou et al., 1990) show efficient 

parallel algorithms, on the CREW PRAM1 model, for generating a succinct 

encoding of all pairs shortest path information in a directed planar graph G with 

real-valued edge costs but no negative cycles. They assume that a planar 

embedding of G is given, together with a set of q faces that cover all the vertices. 

Then their algorithm runs in O(log2V+log3q) time and employs O(Vq) processors. 

Moreover, they present O(log2p) time, p-processor algorithms for various 

subproblems, including that of generating all pairs shortest path information in  

a directed outerplanar graph. Authors of other papers write about: parallelization 

of single-source s.p.a. (Atallah et al., 1997; Crauser et al., 1998; Foster, 1995, sect.3.9; 

Meyer & Sanders, 2001), parallelization of all-pairs s.p.a. (Atallah et al., 1997; 

Foster, 1995, sect.3.9, Han et al., 1997), parallelization of geometric and dynamic 

s.p.a (Lanthier et al., 2003, Subramanian, 1995). 

Analyzing steps of the DSP algorithm in chapter 3.2.3.2 it is easy to observe 

that the 3rd and the 4th steps are dominating from the point of view of algorithm 

complexity and they decide on the form of estimation (3.8): the 3rd step is 

dominating when n<<V and the 4th step − when n→V. Taking into consideration 

that best value n* of n (from the point of view of time complexity) is proportional to 

                                                 
1 Concurrent Read, Exclusive Write (CREW) Parallel Random Access Machine (PRAM). 
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c V⋅ with small nonnegative value of c (see chapter  3.2.3.2), for the big value of V 

we obtain that step 3rd is dominating. A very important problem from the point of 

view of parallelization effectiveness is to assign processors to the nodes (b-nodes) 

skilfully. Although we could assign each processor to subsets of nodes belonging 

to different b-nodes to try to increase effectiveness of the parallel DSP algorithm 

(PDSP), still this assignment may cause significant communication delays. The 

smaller migration of the processors between b-nodes the smaller the 

communications delay. The ideal solution from the point of view of minimizing 

communication delays is to minimize the number of assignments of processors to 

b-nodes. By doing this we minimize multiple copying subgraphs (b-nodes) to the 

local memory being used by processors. To explain these differences let us 

consider the structure of the G* from Fig. 3.7a. For example, having p=2 processors 

it is better to assign the first processor to the left b-node, the second processor to 

the middle b-node (single copying to the local memory of the processor) and next 

(after calculating the shortest paths tree inside each b-node for each of the four 

nodes) to assign the first and the second processor to the different half of the right 

b-node. We then copy the subgraphs (b-nodes) for local memory of the processors 

only 4 times. In the worst case, if we omit the condition regarding minimizing 

migration of the processors between b-nodes, we may have a situation when each 

of the processors is assigned alternately for the left, middle and right b-node and 

we copy b-nodes for local memory of the processors V times (for each node inside 

each b-node). We consider two versions of parallelization: with and without 

parallelization of the Dijkstra’s algorithm being used as a searching algorithm in 

the 3rd and 4th steps of the DSP. Let ( ) logDijkt x x x= ⋅  describe the time complexity 

of the Dijkstra’s algorithm in formula (3.8) and /N V n=    , ( )' 4 / 1N V n = − 
. 

Thus we can write (3.8) as follows: ( ) ( )( )1 ' Dijk DijkT O n N t tN n= ⋅ ⋅ + . 

Theorem 3.3 

The acceleration A(p) of the parallel DSP (PDSP) algorithm using p processors 

without parallelization of the Dijkstra’s s.p.a. inside the DSP is as follows: 

1

' ( ) ( )
,        when  1

/ ' ( ) ( )

' ( ) ( )
( ) ,     when  '

( / ) ' ( ) ( )

' ( ) ( ),                  when  

Dijk Dijk

Dijk Dijk

Dijk Dijk

p Dijk Dijk

Dijk Dijk

n N t N t n
n p

n p N t N t n

n N t N t nT
A p n N p n

T n p N t N t n

n N t N t n p n

⋅ ⋅ +

≥ ≥

⋅ ⋅ +  

⋅ ⋅ +

= = ⋅ > >

⋅ ⋅ +  

⋅ ⋅ + ≥ ⋅ 'N















(3.11) 

and no communication between processors is required. 
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Proof:  

To prove the theorem we considered three cases of p values. We showed the 

Tp complexity of the PDSP algorithm with p processors determining the form of the 

Tp function. Let TB(p) describe the number of the Dijkstra’s algorithm’s parallel 

runs (d.a.p.r.) inside the 3rd step of the DSP algorithm using p processors. For p=1, 

TB(1) is equal (1) 'BT n N= ⋅ . 

If 1n p≥ ≥  then, in the first step, each of the p processors can be assigned to 

each of the p b-nodes of G* (see Fig. 3.7). This step uses / 'n p N⋅    d.a.p.r. For the 

remaining /n n p p n− ⋅ <    b-nodes we use ( )/ '/ 'n n p p N p N− ⋅ ⋅ <        d.a.p.r. 

Thus we can write that 

( ) ( )( ) / ' / '/ / 1 ' / 'BT p n p N n n p p N p n p N n p N= ⋅ + − ⋅ ⋅ ≤ + ⋅ ≤ ⋅                    d.a.p.r.  

Therefore the 3rd step of the DSP algorithm can be estimated using 

/ ' ( ) / 'Bn p N T p n p N⋅ ≤ ≤ ⋅        d.a.p.r. and hence the estimation for both the 3rd 

and the 4th step of the DSP algorithm is as follows: ( )= ⋅ ⋅ +  / ' ( ).p Dijk DijkT n p N t t nN

This estimation is the equality when (n mod p)=0 and otherwise (" ≤ ") it is an 

inequality. For example, using p=2 processors (see Fig. 3.7a) we first assign each of 

the p=2 processors to different b-nodes (dashed-line squares with 1 on the top) to 

calculate the shortest paths tree (SPT) for 4 nodes inside each b-node 

simultaneously using / 'n p N⋅   =4 d.a.p.r. Next, for the remaining / 1n n p p− ⋅ =    

b-nodes we assign p=2 processors to the subsets of N'/p=2 nodes (dashed-line 

rectangles with 2 on the top) to calculate the SPT for 4 nodes inside the b-node 

simultaneously using ( )/ '/ 2n n p p N p− ⋅ ⋅ =        d.a.p.r (total d.a.p.r. = 4+2). Using 

p=3 processors (see Fig. 3.7b) we assign each of the processors to each of the  

b-nodes (dashed-line squares with 1 on the top) to calculate the SPT for 4 nodes 

inside each b-node simultaneously using the total / ' 4n p N⋅ =    d.a.p.r. 

 

n = 3

V/n = 4

V = 12

p=2<n  => T
B 

(2)=4+2=6  d.a.p.r.

1 21

p=3=n  => T
B 

(3)=4  d.a.p.r.

1 1 1

2

 
(a)       (b) 

Fig. 3.7. Processors assignment for n≥p≥1: (a) for p=2; (b) for p=3 

 

If 'n N p n⋅ > >  then we assign /p n    processors to each of the n b-nodes of 

the graph G* and additionally 1 processor to each of the /p n p n− ⋅     b-nodes (see 
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Fig. 3.8). Thus, if (p mod n)≠0, then /p n p n− ⋅     b-nodes have / 1p n +    assigned 

processors and /p n    processors otherwise, and they use ( / ) 'n p N⋅    d.a.p.r. 

Finally, for the remaining ( )/n p n p n− − ⋅     b-nodes we assign processors using 1 

d.a.p.r. Therefore the 3rd step of the DSP algorithm can be estimated using 

( ) ( / ) 'BT p n p N= ⋅    d.a.p.r. and2 ( )( / ) ' ( )p Dijk DijkT n p N t t nN= ⋅ ⋅ +   . For example, 

using p=5 processors (see Fig. 3.8a) we first assign / 3 1n p n⋅ = ⋅    processors to 

different b-nodes and additionally 1 processor for each of the / 2p n p n− ⋅ =     

b-nodes (dashed-line squares with 1 on the top) to calculate SPT for 4 nodes inside 

each b-node simultaneously using ( / ) ' 2n p N⋅ =    d.a.p.r. Next, for the remaining 

( )/ 3 2n p n p n− − ⋅ = −    b-nodes we assign 2 processors: each for the nodes 

belonging to the remaining b-nodes (dashed-line rectangles with 2 on the top) to 

calculate SPT for two nodes inside the b-node simultaneously always using 1 

d.a.p.r (total d.a.p.r. = 2+1). Using p=2n=6 processors (see Fig. 3.8b) we conduct 

analogical calculations when p=n=3 processors (see Fig. 3.7). 

 

n = 3

V/n = 4

V = 12
p=5>n  => T

B 
(5)=2+1=3

d.a.p.r.

1 1

p=6=2n  => T
B 

(6)=1/2*4=2  d.a.p.r.

1 1 1

21 1

1

2 1 1 1

 

(a)       (b) 

Fig. 3.8. Processors assignment for nN'>p>n: (a) for p=5; (b) for p=6 

 

If 'p n N> ⋅  then we assign 'n N⋅  processors to each of the 'n N⋅  nodes  

(N' processors to each of the n b-nodes) of the graph G* using ( ) 1BT p =  parallel 

d.a.p.r. and ( )1 ( )p Dijk DijkT t t nN= ⋅ + . 

♦  

 

Because the acceleration function A(p) of the parallel algorithm using p 

processors is defined as (Foster, 1995; Kumar et al., 1994; Grama et al., 2003): 

1( ) / pA p T T=  thus we obtain formula (3.11) using ( ) ( )1 ' Dijk DijkT n N t tN n= ⋅ ⋅ +  and 

Tp defined as in the proof. Let us notice that, if ( ) ( )'Dijk Dijkt N tn N⋅≪  then the 

acceleration function has the following form: ( )1n p≥ ≥ ⇒ ( ) / /A p n n p=    ,  

                                                 
2 Let us observe that ( / ) ⋅  n p N  may not be equal ( / ) ⋅  n p N . 
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( )'n N p n⋅ > > ⇒ ( ) '/ ( / ) 'A p n N n p N= ⋅ ⋅   , ( )'p n N≥ ⋅ ⇒ ( ) 'A p n N= ⋅ . Effectiveness  

E(p) of the PDSP is defined as (Foster, 1995; Grama et al., 2003): ( ) ( ) /E p A p p= . 

In order to consider the parallelization of the Dijkstra’s algorithm inside the 

DSP algorithm we use two estimations for ,p DijkT  time complexity of parallel 

Dijkstra’s algorithm using the p processor given in (Kumar et al., 1994, sect.7): 

, ( ) (1/ ) log logp DijkT V p A V V p= ⋅ ⋅ +  for the hypercube structure of the parallel 

computation system and , ( ) (1/ ) logp DijkT V p A V V p= ⋅ ⋅ +  for the mesh structure 

of the parallel computation system. Let the follwing be given: 
−

    
= ⋅ +    

⋅ ⋅    

1

, ( ) ( ) log
'

N
Dijk p Dijk

p p
t N t N N

n N n N
 and = ⋅ +, ( ) (1/ ) ( ) logn

Dijk p Dijkt n p t n n p  

for the hypercube structure of the parallel computation system  

and 

−

    
= ⋅ +    

⋅ ⋅    

1

, ( ) ( )
'

N
Dijk p Dijk

p p
t N t N N

n N n N
 and = ⋅ +, ( ) (1 / ) ( )n

Dijk p Dijkt n p t n n p  

for the mesh structure of the parallel computation system. 

Theorem 3.4 

The acceleration A(p) of the parallel DSP (PDSP) algorithm using p processors with 

the parallelization of the Dijkstra’s s.p.a. is created by replacing in the denominators of 

(3.11) tDijk(N) with , ( )N
Dijk pt N  for p>nN' and tDijk(n) with , ( )n

Dijk pt n  for all p. 

Proof:  

It has been shown that the tDijk(n) estimation concerns the 4th step of the DSP 

algorithm, which is done after the 3rd step of the DSP so we can compute it in 

parallel independently of parallelization of the 3rd step. From the first element of 

the Tp,Dijk formula  results that having p processors we may calculate single shortest 

path p times faster (hence we have (1/p)tDijk(n) in , ( )n
Dijk pt n ) and for the second 

element of Tp,Dijk − communications "costs" are proportional to n⋅log p. The form of 

the , ( )N
Dijk pt N

 
estimation results from the following reasoning: we can compute in 

parallel the Dijkstra’s s.p.a. inside the 3rd step of the DSP only for p>nN', because 

we use all processors when 'p n N≤ ⋅  (see proof of the theorem 3.3). When the  

p mod (nN')=0 then we assign p/nN' processors for each of the n b-nodes, so each 

of the nodes inside each of b-nodes uses p/nN' processors to compute the SPT 

parallelly and compute it / 'p n N⋅    faster than having a single processor. Thus  

p from the Tp,Dijk formula is equal to / 'p n N⋅    in the formula 
, ( )N

Dijk pt N . 

♦  



3. Models and Algorithms for Movement Planning 

 

50 

 
(a)     (b) 

Fig. 3.9. Graphs of simulation results of acceleration A(p) for the PDSP algorithm (V=256,  n∈{4, 9, 

16, 25, 64}) for the hypercube (a) and the mesh (b) structure of the parallel computation system. 

Continuous line concerns version of the PDSP with parallelization of the Dijkstra’s s.p.a. and the 

dashed line – without parallelization of the Dijkstra’s s.p.a. 
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(a)     (b) 

Fig. 3.10. Graphs of the simulation results of the E(p) effectiveness for the PDSP algorithm (V=256,  

n∈{4, 9, 16, 25, 64}) for the hypercube (a) and the mesh (b) structure of the parallel computation 

system. Continuous line concerns the version of the PDSP with parallelization of the 

Dijkstra’s s.p.a. and dashed line – without the parallelization of the Dijkstra’s s.p.a. 
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In Fig. 3.9 and Fig. 3.10 we present simulation results (done using 

MATHEMATICA 6.0 kernel) for acceleration (Fig. 3.9) and effectiveness (Fig. 3.10) 

of the PDSP algorithm for both cases defined in theorems 3.3 and 3.4 (when we 

parallelize and when we do not parallelize the Dijkstra’s s.p.a. inside the DSP 

algorithm) and for two types of the structure of parallel computation systems: 

hypercube and mesh. We have conducted these researches for V=256 and different 

values of n: 4, 9, 16, 25 and 64. The greater n the better it shows the differences 

between effectiveness and acceleration (for the same p) for the case when we 

parallelize d.s.p.a. inside DSP. Moreover, it is visible that computations with 

parallelization of the Dijkstra’s s.p.a. inside the DSP algorithm using the hypercube 

structure is a little more effective and we obtain a little better acceleration of the 

PDSP algorithm than using mesh structure. 

3.2.6. Multiresolution Paths and the DSP Algorithm 

Multiresolution environment is a nature of the hierarchical structure of 

military units and methods of their behaviours on a simulated battlefield. For  

a company level of units, greater precision of the terrain (environment) model is 

required than, for example, for the brigade level. In a battlefield simulation many 

models of the environment (terrain) representation is used (see chapter 2.1). The 

most popular are two representations: regular grid of terrain squares (Fig. 3.11a) 

and regular grid of terrain hexagons (Fig. 3.11b). The advantage of the first 

(square) terrain representation is especially visible in a multiresolution context (see 

Fig. 3.11c-e). The size of the terrain square may be dynamically changed and it 

depends on the required level of units. A square with a greater size than the basic 

size can be defined as a square matrix of basic-size squares (for example, in 

Fig. 3.11d each square has a size of 2x2 basic squares). Such a representation is not 

possible for hexagons, so square representation is more useful for multiresolution 

terrain modelling and path planning. In Fig. 3.11c-e an example is shown of path 

determination in the three-level graph: (c) the first level is the most detailed; (d) the 

second level is two times less detailed than the first; (e) the third level is four times 

less detailed than the first. These models may describe for example the platoon, 

company and battalion levels on the battlefield. Let us note that it is easy to obtain 

a multiresolution model of terrain by defining graph G* recurrently. If we establish 

that graph G defines a terrain model of the first level (e.g. company level) than G* 

defines a model of the second (or higher) level (e.g. battalion level). This reasoning 

may be used to increase or to decrease each required level of model resolution. 

Parameter n of the DSP algorithm (n∈{1,…,V}) can be used to decide on the 

dimension of G*. Then, the DSP algorithm may be used for finding multiresolution 

paths in such a multiresolution environment model. For example, in Fig. 3.11c 

G*=G and contains n=256 b-nodes (for the platoon level), in Fig. 3.11d G* contains 
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n=64 b-nodes (for the company level) and in Fig. 3.11e G* contains n=16 b-nodes 

(e.g. for the battalion level). 

It is important to say that the presented method differs from very effective 

representations of terrain using quadtree (Kambhampati & Davis, 1986) because of 

two main reasons: (1) elements of the quadtree, which represent a terrain have  

a non-regular size, (2) in majority applications quadtree represents only a binary 

terrain with two types of regions: open (passable) and closed (impassable). This 

approach is very effective for mobile robots, but it is not adequate to represent 

multiresolution battlefield (Tarapata, 2003a). 
 

 

Fig. 3.11. Examples of terrain representation in a simulated battlefield: a) regular grid of terrain 

squares; b) regular grid of terrain hexagons; multiresolution shortest path from s to t using the DSP 

algorithm in G*:  c) G*=G contains 16×16 nodes; d) G* contains 8×8 nodes; e) G* contains 4×4 nodes 

 

Let us note that the multiresolution approach for path planning represented 

by finding shortest paths in recurrently defined G* can also be used for multistage 

path planning: first we can find a "rough" path *min * *( , )s td x x  (or *max * *( , )s td x x ) − in  

a "rough" terrain represented by G* (for example in Fig. 3.11e) and then we can find 

an accurate path in a more detailed environment (represented by G with small 

squares, Fig. 3.11c; more precisely: we find the shortest path from s to t (s-t path) 

inside the subgraph generated by nodes of G belonging to b-nodes of *min * *( , )s td x x  

(or ( *max * *( , )s td x x , see the 5th step of the DSP algorithm). This is an example of  

top-down modelling. 
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3.3. Multiobjective Paths Planning 

3.3.1. Description of the Problem 

The aim of this chapter is to analyze the complexity of the multiobjective 

(multicriteria) shortest paths (MOSP) problems and to show how we can use 

modifications and advantages of fast implementations of the Dijkstra’s algorithm 

(using effective data structures such as the Fibonacci's heaps and d-ary heaps) in 

order to effectively and optimally solve the selected the MOSP problems. 

The problem of finding the shortest path from a specified origin node to 

another node has been considered, traditionally, in the framework of the single 

objective optimization. More specifically, it is assumed that a value is associated to 

each arc (for example, the length or the travel time), and the goal is to determine 

the feasible path for which either the total distance or the total travel time is 

minimized (see chapter 3.1). In many real applications it is often found that a single 

objective function is not sufficient to characterize adequately the problem. In such 

a case the (MOSP) are used. There are many publications, which deal with these 

problems in two frequently used domains: computer networks (Cidon et al., 1997; 

1999; Grzech, 2002; Kerbache et al., 2000; Silva & Craveirinha, 2004; Tarapata, 

2005c) and transportation (Caramia & Guerriero; 2009; Dial, 1979; 

Halder & Majumber, 1981; Rana & Vickson, 1988; Fujimura, 1996; Modesti 

& Sciomachen, 1998). For instance, in transportation networks, a typical situation 

that can be adequately represented only considering more objectives is related to 

military route planning, where time, distance, ability to camouflage on the path 

must be taken into account at the same time (Tarapata, 2003a; 2007d). Another 

application, in which it is important to deal with several factors, is represented by 

path planning, where the goal is to find a navigation path for a mobile robot 

(Fujimura, 1996). In this case, the navigation path can be considered acceptable 

only if it satisfies multiple objectives, such as safety, time and energy consumption. 

In computer networks (as a special case of transportation networks) routing 

problems are one of the most essential applications of the MOSP problems. The 

most often used criteria of route selection depend on quality of service (QoS) 

(Silva & Craveirinha, 2004). These criteria are, for example, as follows: 

minimization of the number of lost packages; minimization of maximal delay time 

of packages; minimization of the number of disjoint routes or minimization of 

maximal transmission time for the disjoint routes (in case of disjoint routes); 

minimization of overload, measured with the mean value of traffic crossing by 

link; minimization of transmission time from source to destination; minimization 

of route length; minimization of probability of route unreliability or maximization 

of probability of route reliability. Single-criterion formulations of routing problems 

use previously defined criteria. The choice of an appropriate method for solving 
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the defined problems depends on answers to the following questions: whether we 

want to determine routes statically (algorithms: Dijkstra’s, Ford-Bellmann’s, PDM, 

A*) or dynamically (adapting to current load) (Djidjev et al., 1995); are there 

stochastic dependencies in the network (Sigal et al., 1980; Korzan, 1982; 1983a; 

1983b; Loui, 1983; Tarapata, 1999a; 2000e); whether we find the path for a single 

task or simultaneously for many tasks (e.g. through disjoint paths transmitting 

voice and picture or allocating channels in optical networks) (Li et al., 1992; 

Schrijver & Seymour, 1992; Sherali et al., 1998; Tarapata, 1999a); whether we plan to 

determine alternative paths (Golden & Skiscim, 1989). There are many papers 

which deal with the description of practical examples of using many criteria in 

routing problems (Kerbache & Smith, 2000; Silva & Craveirinha, 2004). For 

example, authors of the paper (Climaco et al., 2002) consider a bicriterion approach 

for routing problems in multimedia networks. In practical considerations we often 

use contradicted criteria e.g. fast and reliable access to the services (risk-profit) 

(Korzan, 1982; 1983a; 1983b; Loui, 1983; Tarapata, 1999a; 2000e; 2007d). In such 

cases we can formulate and solve multicriteria optimization problem to support 

the decision of network designers (in computer or transportation networks) or 

administrators (traffic managers in transportation). 

3.3.2. State of the Art in the Multiobjective Shortest Paths Problems (MOSP) 

The MOSP problems are among the most tractable of NP-hard discrete 

optimization problems (Garey & Johnson, 1979). In the work of (Hansen, 1979) the 

existence was proved of a family of problems with an exponential number of 

optimal solutions. This implies that any algorithm solving the multiobjective 

shortest path problem is, at least, exponential in the worst case analysis. On the 

other hand some papers (Warburton, 1987; Vassilvitskii & Yannakakis, 2004; 

Tsaggouris & Zaroliagis, 2005) show that practical ε-approximate algorithms are 

generally limited either to problems having 2 or 3 criteria, or to problems requiring 

the ε-approximation of only certain restricted sets of efficient paths. One of the 

most popular methods of solving the MOSP problems is the construction  

of approximate Pareto curves (Papadimitriou & Yannakakis, 2000; Vassilvitskii 

& Yannakakis, 2004). Informally, a (1+ε)-Pareto curve P
ε
  is a subset of feasible 

solutions such that for any Pareto optimal solution, there exists a solution in P
ε
 that 

is no more than (1+ε) away in all objectives. Papadimitriou and Yannakakis in their 

work (Papadimitriou & Yannakakis, 2000) show that for any multiobjective 

optimization problem there exists a (1+ε)-Pareto curve P
ε
 of (polynomial) size P

ε

=O((4B/ε)N-1), where B is the number of bits required to represent the values in the 

objective functions (bounded by a polynomial in the size of the input), that can be 

constructed by O((4B/ε)d) calls to a "gap" routine that solves (in time polynomial in 
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the size of the input and 1/ε) the following problem: given a vector of values of a, 

either compute a solution that dominates a, or report that there is no solution better 

than a by at least a factor of 1+ε in all objectives (see definition 3.1 in chapter 

3.3.3.1). Extensions to this method to produce a constant approximation to the 

smallest possible (1+ε)-Pareto curve for the cases of 2 and 3 objectives are 

presented in (Vassilvitskii & Yannakakis, 2004), while for N>3 objectives 

inapproximability results are shown for such a constant approximation. For the 

case of the MOSP (and some other problems with linear objectives), Papadimitriou 

and Yannakakis (Papadimitriou & Yannakakis, 2000) show how a "gap" routine 

can be constructed (based on a pseudopolynomial algorithm for computing exact 

paths), and consequently provide a FPTAS (Fully Polynomial Time Approximation 

Scheme) for this problem. Note that FPTAS for the MOSP problems were already 

known in the case of two objectives (Hansen, 1979), as well as in the case of 

multiple objectives in directed acyclic graphs (DAGs) (Warburton, 1987). In 

particular, the 2-objective case has been extensively studied 

(Ehrgott & Gandibleux, 2002), while for N>2 very little has been achieved; actually 

the results in (Warburton, 1987; Papadimitriou & Yannakakis, 2000; 

Tsaggouris & Zaroliagis, 2005) are the only and currently the best FPTAS known 

results. Let Cmax denote the ratio of the maximum to the minimum edge weight (in 

any dimension), V denotes the number of nodes in a digraph, A denotes the 

number of arcs (edges) and N is the number of criteria. For the case of DAGs and 

N>2, the algorithm of (Warburton, 1987) runs in ( )

max 1
(log( )) 2(log )

N
V VC V NO VA

εε

−

− 
 
 

 

time, while for N=2 this improves to ( )

1 maxlog log( )O VA V nC
ε

. For N=2, a FPTAS 

can be created by repeated applications of a stronger variant of the "gap" routine − 

like a FPTAS for the restricted shortest path (RSPP) problem (Hassin, 1992; 

Lorenz & Raz, 2001; Ergun et al., 2002). In (Vassilvitskii & Yannakakis, 2004) it is 

shown that this achieves a time of ( )
1*(log log )O VAP V

ε ε

+  for general digraphs and 

( )
* /O VAP

ε

ε  for DAGs, where *P
ε

 is the size of the smallest possible (1+ε)-Pareto 

curve (which can be as large as 1max max
1log ln( )VC VC

ε ε+

≈ ). All these approaches 

deal typically with the single-pair version of the problem. Authors of the work 

(Tsaggouris & Zaroliagis, 2005) show a new and remarkably simple FPTAS for 

constructing a set of approximate Pareto curves for the single-source version of the 

MOSP problem in any digraph. For any N>1, their algorithm runs in time 

( )

max 1
log( )

N
V VCO VA

ε

− 
 
 

 for general digraphs, and in ( )

max 1
log( )

N
V VCO A

ε

− 
 
 

 for DAGs. 

These results improve significantly upon previous approaches for general digraphs 
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(Golden & Skiscim, 1989; Hassin, 1992) and DAGs (Henig, 1985; Hassin, 1992), for 

all N>2. For N=2 their running times depend on ε -1, while those based on 

repeated-RSPP applications (like in (Vassilvitskii & Yannakakis, 2004)) depend on 

ε -2. Their approach for the MOSP, unlike previous methods that are based on 

converting pseudopolynomial time algorithms to FPTAS using rounding and 

scaling techniques, builds upon a natural iterative process that extends and merges 

sets of node labels representing partial solutions, while keeping them small by 

discarding some solutions in an error controllable way. One of the first papers, 

which dealt with the MOSP problems, was (Loui, 1983). The paper explores 

computationally tractable formulations of stochastic and multidimensional optimal 

path problems. A single formulation encompassing both problems is considered, in 

which a utility function defines preference among candidate paths. The result is 

the ability to state explicit conditions for exacting solutions using standard 

methods, and the applicability of well-understood approximation techniques. 

Korzan wrote three papers (Korzan, 1982; 1983a; 1983b), which deal with the 

shortest path problem in unreliable networks. In the first one he presents methods 

of determining the optimal path in unreliable directed networks under different 

assumptions concerning randomness of network elements. He assumes the 

vectoral objective function with two components: path length (e.g. time) and some 

measure of unreliability (e.g. probability of path "surviving"). An appropriate 

multioptimization problem and method for determining compromise path for this 

problem is described there. Some extensions of problems and their solving 

methods included there were discussed in further two papers (Korzan, 1983a; 

1983b). In the papers (Tarapata, 1999a; 2000e) an optimization problem of a few 

tasks sending in a parallel or distributed computing system under conditions of 

unreliability of computers and lines is considered. As a model of the system  

a network is used with functions described on its nodes (time of task service in 

node and probability of nodes (computers) reliability) and arcs (time distances 

between nodes and probability of arc (line) reliability during transmission). The 

damaging process of a network element (node or arc) is begun: when a task starts 

its service in it (for a node) or its movement (for an arc) and it does not depend on 

the time, which elapsed from the start time of tasks sending (Tarapata, 1999a); 

when tasks start its service (or movement) in source nodes (Tarapata, 2000e). In the 

second case, the "time-life" distribution of network elements depends on the time, 

which elapsed from the start time of tasks sending. It may be explained by the fact 

that, for example, the probability of damaging an element of a computer network is 

grows in time. In the military communication systems the probability of destroying 

elements of the system depends on its working time (the longer the system 

working time the greater the possibility of the system locating and, in consequence, 

the higher the probability of annihilation of any elements of the system).  
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A problem for determining the best set of K>1 disjoint paths in an unreliable 

network is formulated as a two-criteria optimization problem, in which the first 

criterion is the time of sending the slowest task (or the sum of times of sending all 

tasks) being minimized and the second one – the probability of reliability of all 

(K>1) paths being maximized. An approximation algorithm to solve the 

optimization problem is shown. The algorithm generalizes the Dijkstra’s shortest 

path algorithm in the case when we look for the K (K>1) disjoint paths in the 

network with two functions (probabilities and distances) described on the network 

nodes and arcs. Moreover, some conclusions concerning particular conditions, 

which the paths should satisfy, are given. 

 

Table 3.5. Classification of the Multiobjective Shortest Path Problems (MOSP)  

Code of the problem References 

2-SUM/E/LC (Tung & Chew, 1988; Brumbaugh-Smith & Shier, 1989;  

Skriver & Andersen, 2000) 

2-SUM/E/LS (Hansen, 1979) 

2-SUM/E/2P,LC (Mote et al., 1991) 

2-SUM/E/SP (Martins & Climaco, 1981; Climaco & Martins, 1982;  

Huarng et al., 1996)  

2-SUM/E/DP (Henig, 1985) 

2-SUM/ Appr(E)/Appr (Hansen, 1979) 

1-SUM 1-max/E/SP (Hansen, 1979; Pelegrin & Fernandez, 1998) 

2-SUM/C/IA (Current et al., 1990) 

2-SUM/U/SP (Henig, 1985) 

2-SUM/U/IA (Murthy & Olson, 1994) 

2-SUM/e/IA (Coutinho-Rodrigues et al., 1999) 

2-SUM/C,SCH/LS (Korzan, 1982; 1983b) 

2-SUM/lex,SCH/LS (Korzan, 1983a; 1983b) 

3-SUM/E/LC (Gabrel & Vanderpooten, 1996) 

3-SUM/C/IA (Gabrel & Vanderpooten, 1996) 

Q-SUM/SE/SP (Henig, 1985; White, 1987) 

Q-SUM/E/LS (Martins, 1984) 

Q-SUM/E/LC (Tung & Chew, 1992; Corley & Moon, 1985; Cox, 1984) 

Q-SUM/E/DP (Hartley, 1985; Kostreva & Wiecek, 1993) 

Q-SUM/Appr(E),Appr(MO)/Appr (Warburton, 1987) 

Q-SUM/C/IA (Henig, 1994) 

Q-SUM/U/DP (Carraway et al., 1990) 

Q-SUM/U/SP (Modesti & Sciomachen, 1998) 

Q-SUM/MO/DP,BB (Rana & Vickson, 1988) 

Q-SUM/MO/LC (Murthy & Her, 1992) 

Q-SUM/U,SCH/Appr (Loui, 1983) 

Q-SUM/MO,D,C,lex,SCH/Appr,LS (Tarapata, 1999a; 2000e; 2005c; 2007d) 
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Generally, the multiobjective shortest path problem can be considered from 

the point of view of the following categories: number of criterions, type of problem 

(compromise solutions, lexicographic solutions, max-ordering problem, etc.), 

solution method (label setting or correcting algorithm, tabu search algorithm, 

simulated annealing algorithm and others). In Table 3.5 we classify the MOSP 

problems (as modification of classification proposed in (Ehrgott & Gandibleux, 

2002)) using notation X/Y/Z where: X describes the number and type of objective 

functions (X=Q stands for an arbitrary number of objectives, e.g. 1-SumQ-max 

denotes a problem with the sum and Q bottleneck objectives), Y denotes the types 

of problems, Z denotes the types of solution methods. The entries for the Y 

position are as follows: E − finding the efficient set, e − finding a subset of the 

efficient set, SE − finding supported efficient solutions, Appr(x) − finding an 

approximation of x, lex − solving the lexicographic problem (preemptive priorities), 

MO − max-ordering problem, U − optimizing a utility function, C/S − finding  

a compromise respectively satisfying the solution, D − disjoint-path problem, SCH 

– stochastic problem. The entries for the Z position are as follows: SP − exact 

algorithm specifically designed for the problem, LS/LC − label setting or label 

correcting method, DP − algorithm based on dynamic programming, BB − 

algorithm based on branch and bound, IA − interactive method, 2P − two phases 

method, Appr − approximation algorithm with worst case performance bound. 

Other particular multiobjective path problems are presented in (Dial, 1979; 

Engberg et al, 1983; Halder & Majumber, 1981; Sancho, 1988; Wijeratne et al., 1993). 

3.3.3. Model of the MOSP Problem 

3.3.3.1. Formulation of the MOSP problem  

Let the directed graph ,G GG V A=  be given, where VG – set of graph nodes, 

VG={1,2,...,V},  AG – set of graph arcs, { }, ' : , 'G GA v v v v V⊂ ∈ , GA =A. For example, 

in computer networks we have routers as nodes of G and physical links between 

routers as arcs of G. Generally, for each arc of G we may define arc functions 

fn(v,v’), n=1,…,N, which describe such characteristics of the arc , ' Gv v A∈  as: 

transmission time, distance, load, reliability, capacity, acceptable flows, etc. We 

assume that, there are K tasks, which we need to transport from source nodes is to 

destination ones id,  ( )(1), (2), ..., ( ), ..., ( )s s s s si i i i k i K= , ( )(1), (2), ..., ( ), ..., ( )d d d d di i i i k i K= . 

For K=1 we have a classical case of routing for a single task. In some examples used 

in the chapter we use a computer network model such as G with predefined matrix 

c=[cv,v’]VxV, where 1 2
, ' , ' , ' , ' , ', , ..., , ...,k K

v v v v v v v v v vc c c c=c , , '
k
v vc – nonnegative value 

describing transaction (transmission) time (cost) of the k-th task on the arc 
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, ' Gv v A∈  (when v≠v’). Moreover, let ( ( ), ( ))s d
kI i k i k  describe the simple path and 

( ( ), ( ))s d
kT i k i k  describe achieving times of nodes belonging to the path for the k-th 

task as follows:  

( )
0 1

( ( ), ( )) ( ) ( ), ( ),..., ( ),..., ( ) ( )= = =
kRs d s r d

k
I i k i k i k i k i k i k i k i k

 
(3.12)

( )
0 1( ( ), ( )) ( ), ( ), ..., ( ), ..., ( )kRs d ri k i k k k k kτ τ τ τ=

k
T    (3.13) 

where: ( )ri k − the r-th node on the path for the k-th task; ( )r kτ − achieving time of 

the r-th node on the path for the  k-th task,  

1( ), ( )
1

( ) m m

r
r k

i k i k
m

k cτ
−

=

=∑ ,    1, , 1,kr R k K= =

    (3.14) 

We establish that if K=1 we omit index k (i.e. ir(1)≡ir, τ r(1))≡τ r, etc.). 

 We describe by M(is,id) the set of acceptable K-dimensional vectors of paths  

in G from is to id, and by I(is,id) – the element of M(is,id). It can be observed, that 

I(is,id) is a vector which components are simple paths for each k-th task. We also 

establish, that I≡I(is,id) (we omit is and id in the description). We assume that we 

have a N-component vector 1 2( ) ( ), ( ), ..., ( )NF I F I F I F I=  of criteria functions 

estimating vector of paths I∈M(is,id). We have an arc function  fn(v,v’),  , ' Gv v A∈ , 

{1, ..., }n N∈ , which will be used to calculate Fn(I) (e.g. as a sum of values of  fn(v,v’) 

for arcs belonging to the path I). Thus, we can say that we have defined in the set 

M(is,id) the vectoral objective function as follows: 

 1 2( ) ( ), ( ),..., ( )NF I F I F I F I= ,  I∈ M(is,id)    (3.15) 

The multicriteria shortest paths (MOSP) problem can be formulated as follows: 

( , ), ( ),s d DM i i F I R        (3.16) 

where ( , ) ( , )D D s d D s dR Y i i Y i i⊂ ×  is the domination relation in the criteria space   

 { }1 2( , ) ( ) ( ) ( ), ( ),..., ( ) : ( , )D s d s d
NY i i y I F I F I F I F I I M i i= = = ∈  and (3.17)

( ){ }( ), ( ) ( , ) ( , ) : ( ), ( ) 1D D D
m z m zR F I F I Y Y F I F I= ∈ ⋅ ⋅ × ⋅ ⋅ Ψ =  (3.18)

( )

1          when  F( ) "is better" than F( )
( ), ( )

0         otherwise
m z

m z

I I
F I F I


Ψ = 


  (3.19) 

We can solve problem (3.16) using various methods of finding the so-called 

nondominated solutions. The set of nondominated results equals:  

  
( ) ( , )
( ) ( )

( , ) ( ) ( , ) :  ~ ( ), ( )
D

ND s d D D

z I Y
z I y I

Y i i y I Y z I y I R
∈ ⋅ ⋅

≠

  
= ∈ ⋅ ⋅ ∃ ∈ 
    

(3.20) 
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The set of nondominated solutions (paths) is determined as an inverse image  

of  ( , )ND s dY i i  as follows: 

{ }( , ) ( , ) : ( ) ( , ) ND s d s d NDM i i I M i i y I Y= ∈ ∈ ⋅ ⋅

   
(3.21) 

In order to solve the MOSP problems other approaches are also used, e.g. the 

vector ε-domination (Warburton, 1987; Tsaggouris & Zaroliagis, 2005). The vector 

ε-domination method uses Definition 3.1.  

Definition 3.1 (Warburton, 1987) 

We say that vector 1 2, , ..., Na a a a=  ε-dominates vector 1 2, , ..., Nb b b b=  for 

the fixed ε ≥ 0 (we write: a b
ε

≤ ), if the following formula is satisfied:  

1,
   (1 )n n

n N
a bε

=

∀ ≤ + ⋅

       
(3.22) 

In some approaches it is additionally assumed that for at least one of the 

{ }1,...,n N∈ , e.g. n’ we have ' '(1 )n na bε< + ⋅ . It can be observed that for ε=0 this 

concept reduces to the usual notion of vector dominance. To use this approach we 

have to replace the domination relation (3.18) with the ε-domination relation 

{ }( ), ( ) ( , ) ( , ) :  ( ) ( )D D D
m z m zR F I F I Y Y F I F I

ε

ε

= ∈ ⋅ ⋅ × ⋅ ⋅ ≤  and we can solve a problem of 

finding the ε-shortest path which, according to (3.22), has cost no more than (1+ε) 

away from the optimal values for all objectives. Warburton in the paper 

(Warburton, 1987) studies methods for approximating the set of Pareto optimal 

paths in multiple-objective, shortest path problems. He gives the approximation 

methods that can estimate the Pareto optima to any required degree (ε) of 

accuracy. The basis of his results is that the proposed methods are "fully 

polynomial": they operate in time and space bounded by a polynomial in problem 

size and accuracy of approximation – the greater the accuracy, the more time 

required to reach a solution. 

3.3.3.2. Example of the routing problem formulation as a two-criteria 

optimization problem 

 In the example of the routing problem formulation as the MOSP problem it 

is assumed that on each arc , 'v v  of the G graph we additionally define a function 

, '( )v vq t  (identical for each task 1,k K= , so we omit k in the description of , '( )v vq t ), 

which describes the probability of the arc reliability at least at the time t: 

{ }, ', '( ) Pr v vv v
tq t γ ≥= , γv,v’ – nonnegative random variable representing "time-life" of 

the arc , 'v v . We assume that random variables γv,v’  are nonnegative and 
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independent for each pair , 'v v  of arcs. Then for each vector of paths I in G we 

can define the probability that all K disjoint paths will "survive" as follows: 

  ( ) ( )1
1 ( ), ( ) ( ), ( )

1 1

( , )
k

r r
r ri k i k

RK
s d k

i k i k
k r

P I i i q c
−

−

= =

=
∏∏

    
(3.23) 

Next we also define the time of achieving the destination nodes by all K tasks, as 

time of achieving the destination node by the most delayed task (3.24) or as a sum 

of achieving times of the destination nodes (3.25): 

( )
{1,..., }

( , ) max ( )kRs d

k K
T I i i kτ

∈

=

 
or     (3.24) 

( )

{1,..., }

( , ) ( )kRs d

k K

T I i i kτ

∈

= ∑
      

(3.25) 

Then the vectoral objective function (3.15) has the form of: 

( ) ( ), ( )F I T I P I= ,  I∈M(is,id),     (3.26) 

i.e. F1(I)=T(I), F2(I)=P(I). Criteria space ( , )D s dY i i  has the form: 

{ }( , ) ( ) ( ), ( ) : ( , )D s d s dY i i F I T I P I I M i i= = ∈ ,   (3.27) 

and function (3.19) (which causes that relation (3.18) is a Pareto relation): 

( )

( )

( )

1          when  ( ) ( ) ( ) ( )

( ), ( )                      ( ) ( ) ( ) ( )

0          otherwise

m z m z

m z m z m z

T I T I P I P I

F I F I T I T I P I P I

 < ∧ ≥ ∨


Ψ = ∨ ≤ ∧ >




(3.28) 

We can equivalently define the problem formulated above as follows: to 

determine ( )
*( , ) ,s d s dI i i M i i∈ , for which 

( ) ( )

( ) ( )

* *

( , ) ( , )

* *

( , ) ( , )

( , ) min ( , ) ,

( , ) max ( , )    or

s d s d

s d s d

s d s d

I i i M i i

s d s d

I i i M i i

T T I i i T I i i

P P I i i P I i i

∈

∈

= =

= =

   

(3.29) 

( ) ( )

*

( , ) ( , ) ( , ) ( , )

ˆ ˆmin min 1( , ) ( , )
s d s d s d s d

s d s d

I i i M i i I i i M i i
P P PI i i I i i

∈ ∈

= = −

  
(3.30) 

Generally, if the objective is to maximize one or more components of F(I) 

from (3.15), the MOSP algorithms can be applied to compute efficient paths only if 

G is acyclic (DAG). If G contains cycles and N=1 we solve the NP-hard longest path 

problem (for N>1 the problem is at least as difficult as for N=1) (Garey & Johnson, 

1979). Therefore, we assume that all components of F(I) are minimized and all of 

these have nonnegative values. 
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3.3.4. Methods of Solving the MOSP Problems 

3.3.4.1.  Methods of solving single-criterion subproblems of the MOSP problem 

Method of determining T* and P* from (3.29)-(3.30) depends on number K of 

tasks, for which we determine paths. If K=1, then we have the classical shortest 

paths problem in graph G for fixed pairs of nodes (is, id) with the arc function , 'v vc . 

This problem could be solved for the criterion function ( ( , ))s dT I i i  using, e.g. 

algorithms described in chapter 3.1. When the arc function is nonadditive or 

nonlinear we can use the approach described by the authors in (Bernstein & Kelly, 

1997; Cai et al., 1997) or we can formulate a nonlinear optimization problem and 

solve it using Kuhn-Tucker’s optimality conditions. For the function ˆ( ( , ))s dP I i i  the 

approach presented in (Korzan, 1983b) could be used. Even though the function 

ˆ( ( , ))s dP I i i  from (3.30) is multiplicative (multiplications of probabilities), then it is 

possible to obtain an additive form as follows: 

( ) ( )1
1 ( ), ( ) ( ), ( )

1 1

ˆ ( , ) ln  
k

r r
r ri k i k

RK
s d k

i k i k
k r

P I i i q c
−

−

= =

=∑∑
ɶ

    (3.31) 

Defining the arc function as: ( )1 , ' , '( , ') ln v v v vf v v q c=  we can solve the problem  

(3.29)-(3.30) optimally using the Dijkstra’s algorithm (because of function 1( , ')f v v  is 

additive and nonnegative). The obtained solutions (i.e. *( , )s dI i i ) both for function 

ˆ( ( , ))s dP I i i  and ˆ( ( , ))s dP I i i
ɶ

 are identical. Other approaches to find the best path in 

stochastic graphs are considered in (Corea & Kulkarni, 1990; Cormican et al., 1998; 

Sigal et al., 1980; Korzan, 1982; 1983a; Loui, 1983; Tarapata, 1999a; 2000e). 

The situation is more complicated when K>1. If we want to find disjoint 

routes for K tasks then even for K=2 and function ( ( , ))s dT I i i  the problem is  

NP-hard (Schrijver & Seymour, 1992; Schrijver, 2004). Disjoint paths problems we 

will consider in chapter 3.4. 

In further considerations in this chapter we assume that K=1. Let us note that 

for K=1 the objective functions (3.24) and (3.25) are equivalent. We also assume that 

1 1
si s= , 1 1

di t= . 

3.3.4.2.  Method of compromise solutions 

To find the compromise solution with parameter p≥1 we use the εp metric in 

the YD(⋅,⋅) space: 

* * *

1

( , ( )) , ( ) ( )
N p

p
p n np

n

h h I h h I h h Iε

=

= = −∑
    

(3.32) 

For the compromise result h0 the following condition is satisfied: 
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( ) ( )

* 0 *

( , )
, ( ) min , ( )

s dp p
I M i i

h h I h h Iε ε

∈

=

     
(3.33) 

The compromise solution ( , )c s dI M i i∈

 is such that the formula (3.33) is fulfilled. 

Let us note that the metric (3.32) defines different distances from the "ideal" point 

(Ameljańczyk, 1984): 

• for p=1 we obtain the sum of absolute deviations from ideal point (street 

metric); 

• for p=2 we obtain the Euclidesian metric (in two-dimensional space = 

geometric distance between points) – "the best" compromise (Current et al., 

1990; Gabrel & Vanderpooten, 1996; Henig, 1994; Korzan, 1982; 1983b); 

• for p=∞ we obtain the Tchebycheff metric (minimization of maximal 

differences between "ideal" and actual value of criteria); this problem is also 

known as the max-ordering problem (Mote et al., 1991; Rana & Vickson, 1988; 

Warburton, 1987). 

 

To find compromise solution with parameter p≥1 we use the metric ε1 replacing 

( ) with ( )T I T I  and ( ) with ( )P I P I . In order to find a compromise solution of the 

problem (3.16) with a vectoral objective function ( ) ( ), ( )F I T I P I=  we have to 

determine T* and P* using the method described in the previous chapter. Having T* 

and P* we can define 
* *

( ) ( )
( ) ,  ( )

P I T I
P I T I

P T
= =  by obtaining the normalized vector 

objective function: 

* *

( ) ( )
( )  ,  

T I P I
h I

T P
=

      
(3.34) 

under the assumption, that T*
≠0 and P*

≠0. It can be observed that ( ) 1T I ≥  and  

( ) 1P I ≤ , I∈M(⋅,⋅) so we can obtain the normalized ideal point * (1,1)h = . 

For example, for  p=1 we obtain: 

*
1 * *

( ) ( )
( , ( )) 1 1

T I P I
h h I

T P
ε = − + −      (3.35) 

From the condition, that  
*

( )
1

T I

T
− ≤ 0  and  

*

( )
1

P I

P
− ≥ 0  results: 

*
1 * * * *

( ) ( ) ( ) ( )
( , ( )) 1 1

T I P I T I P I
h h I

T P T P
ε = − + − = −    (3.36) 

For the compromise h0 result the following condition is satisfied: 

* 0 *
1 1 * *

( , ) ( , )

( ) ( )
( , ( )) min ( , ( )) min

s d s dI M i i I M i i

T I P I
h h I h h I

T P
ε ε

∈ ∈

 
= = −  

  (3.37) 
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For the compromise solution ( , )c s dI M i i∈  (with p=1) above formula is fulfilled.  

However, since function 
* *

( ) ( )T I P I

T P
−  has positive values then it is difficult to 

build an additive nonnegative arc function to calculate it. It is very inconvenient, 

because the Dijkstra’s algorithm (as a classical algorithm solving shortest path 

problem) requires the values of the arc function to be nonnegative and additive 

(function *
1( , ( ))h h Iε  is nonadditive because of multiplications during the 

calculation of the 
*

( )P I

P
 value). The author of the paper (Korzan, 1982) shows that 

(for single task, i.e. K=1) if the arc function , '( )v vq t  is in the form of  

( , ')

, '( ) ,   ( , ') 0v v t

v vq t e v vλ

λ

− ⋅

= > , that is the probability function P from (3.23) equals: 

( ) ( )

1
1 1

1 11 1 1 , 1 ,  1
1

1 ,

( , )  
( , )  1

,
1 1

( , )

R
r r

r r r ri ir ri i r
r r

r ri i

R R i i c
i i cs d

i i
r r

P I i i q c e e
λ

λ

−

−
−

−

=

−

−

− ⋅

− ⋅

= =

∑
= = =

∏ ∏ (3.38) 

then the maximization of ( )( , )s dP I i i  is equivalent to minimization of 

( )

1

1

1 1

,
1

( , ) ( , ) r r

R
s d r r

i i
r

I i i i i cβ λ
−

−

=

= ⋅∑ . In this case we can define a new normalized 

vectoral objective function * *ˆ( ) ( ) /  ,  ( ) /h I T I T Iβ β= , where ˆ( ) ( ) ,  ( )h I T I Iβ= , 

*( ) ( )/T I T I T= , *( ) ( )/I Iβ β β=  and ideal point * (1,1)h = . Determining a new 

measure 1ε̂  we obtain *
1

ˆˆ ( , ( )) 1 ( ) 1 ( )h h I T I Iε β= − + − . But 1 ( ) 0T I− ≤  and 

1 ( ) 0Iβ− ≤ , so we obtain *
1

ˆˆ ( , ( )) ( ) 1 ( ) 1 ( ) ( ) 2h h I T I I T I Iε β β= − + − = + − . It can be 

observed that the function ( ) ( ) 2T I Iβ+ −  has the minimum value for the same I as 

the function ( ) ( )T I Iβ+ , so the component (-2) may be omitted and we have: 

* 0 *
1 1

( , ) ( , )

ˆ ˆˆ ˆ( , ( )) min ( , ( )) min ( ) ( )
s d s dI M i i I M i i

h h I h h I T I Iε ε β

∈ ∈

 = = + 
  

(3.39)
 

The objective function from (3.39) is nonnegative and additive. Let us define the 

temporary function ( )H I  as ( ) ( ) ( )H I T I Iβ= + , so 

1 1

1 1

1

1

1 1 1

* * * *, ,
1 1

1 1
* * ,

1

( ) ( ) 1 1
( ) ( , )

1 1
( , )        =

r r r r

r r

R R
r r

i i i i
r r

R
r r

i i
r

T I I
H I c i i c

T T

i i c
T

β

λ

β β

λ

β

− −

−

−

= =

−

=

= + = + ⋅ =

 
+ ⋅ ⋅ 

 

∑ ∑

∑
 (3.40) 

In connection with the above we can define the problem of finding the compromise 

path ( , )c s dI M i i∈  with p=1 as follows: to determine ( , )c s dI M i i∈ , such that 

( , )
( ) min ( )

s d

c

I M i i
H I H I

∈

=        (3.41) 
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To solve the problem (3.41) optimally using the standard Dijkstra’s algorithm we 

can use the following arc meta-function ( , ')mf v v : 

1
, '* *

1 1
( , ')( , ') v v
v vmf v v c

T
λ

β

 
+ ⋅= ⋅ 

 
,   , ' Gv v A∈

  
(3.42) 

The definition presented above has one more interesting property: if for each arc 

, ' Gv v A∈  it is fulfilled that ( , ') 0v vλ λ= >  then ( )

1

1

1

,
1

( , ) r r

R
s d

i i
r

I i i cβ λ
−

=

= ⋅∑  and 

* *

( ) ( )ˆ( ) ,
T I T I

h I
T T

λ

λ

= , so we can solve single-criterion problem with criterion T. 

Generally, if arc functions f1, f2, …, fN are nonnegative, additive (i.e. 

1( ) 1

1
0

( ) ( (1), (1))
R I

n n r r
r

F I f i i
−

+

=

= ∑ ) and all of these are minimized then the ε1 measure from 

(3.32) (for p=1) has the form of:  

1 1

1
0

1 * *
1 1

( , )
( )

( *, ( )) 1 1

R

n r rN N
n r

n nn n

f v v
F I

h h I
F F

ε

−

+

=

= =

= − = −

∑
∑ ∑ ,  (3.43) 

where *

( , )
min ( )

s dn n
I M i i

F F I
∈

= , 1
* *

1

( ) ( )
( ) , ..., N

N

F I F I
h I

F F
= , and *

 times

(1,1,...,1)
N

h =

����� . Because 

*

( )
1 0n

n

F I

F
− ≤  for all 1,n N= , so we can write that *

1 *
1

( )
( , ( ))

N
n

n n

F I
h h I N

F
ε

=

= −∑ . It can be 

observed that function 
*

1

( )N
n

n n

F I
N

F
=

−∑  has the minimum value for the same I as 

function 
*

1

( )N
n

n n

F I

F
=

∑ , so the component (−N) may be omitted. In this case for the 

compromise result h0 the following condition is satisfied (problem CSp=1): 

* 0 *
1 1 *

( , ) ( , )
1

( )
( , ( )) min   ( , ( )) min  

s d s d

N
n

I M i i I M i i
n n

F I
h h I h h I

F
ε ε

∈ ∈

=

= = ∑
  

(3.44) 

Thus, we can solve the problem CSp=1 optimally using the standard Dijkstra’s 

algorithm with the following arc metafunction ( , ')mf v v : 

*
1

( , ')
( , ')

N
n

n n

f v v
mf v v

F
=

=∑ ,   , ' Gv v A∈

    
(3.45) 

Proof of optimality of such an obtained solution is presented in the next 

chapter (with Theorem 3.5). For parameters p>1 it is impossible to obtain  

a nonnegative, additive, linear form of an arc function so it is rather impossible to 

solve the problem of finding a compromise solution optimally using Dijkstra’s 



Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation... 

 

67 

algorithm. In such cases the problem can be formulated as a quadratic 

programming problem (p=2) or max-ordering problem (p=∞) (Rana & Vickson, 

1988; Warburton, 1987; Mote et al., 1991). Method of compromise solutions with 

parameter 1 p≤ < ∞  guarantees obtaining nondominated solutions, i.e. 

( , )c ND s dI M i i∈  (Ehrgott, 1997; Martins & Santos, 1999). 

In chapter 3.3.4.6 we define the CSp=1 problem as a linear programming 

problem MOSP_LP1 and MOSP_LP2, problem CSp=2  as MOSP_NP1 and problem 

CSp=∞  as MOSP_NP2. 

3.3.4.3.  Method with a metacriterion function 

 In this method we will construct a function, the so-called metacriterion 

function, which "merges" all criteria. There are two main approaches to define the 

metacriterion function: the first metacriterion function is in the form of a weighted 

average of criteria, in the second one we minimize maximal deviations of criteria 

values from its "ideal" values (an analogy to compromise the solution with 

parameter  p=∞). 

I. Metacriterion function in the form of weighted average of criterions with weights 

αn, 1,n N=  is defined as follows (under assumptions that all criteria are 

minimized): 

*

1

( ) ( )
N

n n
n

MF I F Iα

=

= ⋅∑
       

(3.46) 

1 1

1
* 0

*

( , ) ( , )

( , )
( ) ( )

( )
min ( ) min ( )

s d s d

R

n r r
n n r

n

n n n
I M i i I M i i

f v v
F I F I

F I
F F I F I

−

+

=

∈ ∈

= = =

∑
,    1,n N=   (3.47) 

where: * 0nF > , ( , )nf i i  describes the n-th arc function of G, : ,  1,n Gf A R n N+

→ = , R1 

describes the number of nodes belonging to path I. Frequently it is assumed that 

weights must satisfy following conditions: (0,1),   1,n n Nα ∈ = , 
1

1
N

n
n

α

=

=∑ . This 

guarantees obtaining nondominated solutions, i.e. ( ),MF ND s dI M i i∈  (Ehrgott, 1997; 

Martins et al., 1999). 

The problem of finding an optimal solution (problem MF_1) can be 

formulated as follows: determine such a ( ),MF s dI M i i∈  that the following condition 

is fulfilled: 

 
( ),

( ) min ( )
s d

MF

I M i i
MF I MF I

∈

=

      
(3.48) 

We can solve this problem using the Dijkstra’s algorithm with a single arc 

metafunction ( , ')mf v v  and with a metacriterion function MF(I): 
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*

1

( , ')
( , ')

N
n

n
n n

f v v
mf v v

F
α

=

= ⋅∑ ,   , ' Gv v A∈

    
(3.49) 

 
1 1

1
0

( ) ( , )
R

r r
r

MF I mf v v
−

+

=

= ∑       (3.50) 

Theorem 3.5 

If arc functions f1, f2, ..., fN , : ,  1,i Gf A R i N+

→ =  are additive then we can solve the 

problem (3.48) optimally using the Dijkstra’s algorithm with the arc meta-function (3.49). 

In this case the meta-function (3.46) is equal to meta-function (3.50). 

Proof : 

When functions f1, f2, ..., fN are nonnegative then the function (3.49)  

is nonnegative, and when functions f1, f2, ..., fN  are additive then the cost of path I is 

calculated as a sum of meta-costs of arcs belonging to path I. In this case 

assumptions of the Dijkstra’s algorithm regarding the arc function (nonnegativity 

and additivity) are satisfied, so we can use this function as the arc function in the 

algorithm. Now, we will prove that MF(I)=LF  from (3.46) is equal 

1 1

1
0

( , )
R

r r
r

mf v v RG
−

+

=

=∑  using (3.50). From (3.46) and (3.47) we obtain: 

1

1

1

11
* 0

1* *
1 1 1 0

( , )

( ) ( ) ( , )

R

Rn r rN N N
r n

i i n n r r
i n n rn n

f v v

LF MF I F I f v v
F F

α

α α

−

−+

=

+

= = = =

= = ⋅ = ⋅ = ⋅

∑
∑ ∑ ∑∑ ,  

and from (3.49) and (3.50) we obtain 

1 1 1( ) 1 1 1
1

1 1* *
0 0 1 1 0

( , )
( , ) ( , )

R I R RN N
n r r n

r r n n r r
r r n n rn n

f v v
RG mf v v f v v

F F

α

α

− − −

+

+ +

= = = = =

= = ⋅ = ⋅∑ ∑∑ ∑∑ ,   

thus LF=RG. 

♦  

 

Let us note that arc function (3.45) is a special case of arc function (3.49) (all 1iα = ), 

thus, problem (3.44) is a special case of problem (3.48). 

The complexity of the algorithm is presented in Theorem 3.6. 

Theorem 3.6 

Complexity of the modified Dijkstra’s algorithm (with Fibonacci’s heaps) for solving 

problem (3.48) using the arc metacriterion function (3.49) is equal 

( )( log )O N V V A NA+ + . 
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Proof: 

To calculate the arc metafunction (3.49) for each arc we must firstly solve the , 

shortest path problem N times for each criterion: it takes time proportional to 

( )( log )O N V V A+  using Dijkstra’s algorithm implemented with Fibonacci’s heaps. 

Next, we have to separately calculate the metafunction (3.49) for each arc value; it 

takes a proportional time of ( )NAΘ  for all arcs. Using the Dijkstra’s algorithm 

with the arc metafunction (3.49) we calculate the shortest path in a time of  

( )logO V V A+ , thus the total time of the algorithm for solving problem (3.48) is 

equal ( )( log )O N V V A NA+ + . 

♦  

 

II. Metacriterion function with minimization of maximal deviations of criteria values 

from their "ideal" values can be defined using the following temporary function:  

1

*
( , ) ( , )

1

1
0

min ( ) min ( )
( )

( ) ( )
( , )

s d s dn n
I M i i I M i in

n R

n n
n r r

r

F I F I
F

F I
F I F I

f v v

∈ ∈

−

+

=

= = =

∑
,  1,n N=   (3.51) 

Let us note that ( ]( ) 0,1nF I ∈ , 1,n N= , so the ideal point is equal 1. Now, we 

can define the metacriterion function with minimization of maximal deviations of criteria 

values from their “ideal” values (problem MF_2) as follows: 

 minu →        (3.52) 

  subject to  

1 ( ) ,    ( , )s d
nF I u I M i i− ≤ ∈       (3.53) 

Additional variable u describes maximal deviation of values of criteria functions 

( )nF I  from their "ideal" values (i.e. 1). From the condition ( ]( ) 0,1nF I ∈  results that 

[ )0,1u∈ . In chapter 3.3.4.6 we define this problem in details as a mathematical 

programming problem (MOSP_NP3). 

We will show that the MF_2 problem can be considered as a problem of 

finding (1+ε)-shortest path, ε≥0. Constraint 1 ( )nF I u− ≤  can be written as follows: 

*1
( )

1n nF I F
u

≤ ⋅

−

. Taking into account the definition of the vector (1+ε)-dominance 

(see (3.22)) we obtain: *( ) (1 )n nF I Fε≤ + ⋅  that is 
1

1
1 1

u

u u
ε ε= + ⇒ =

− −

. Hence, 

minu →  is equivalent to minε → , because ε  is an increasing function of u. 

Therefore, the MF_2 problem can be solved by finding (1+ε*)-shortest path, where 

ε* is the smallest value of ε such that (1+ε)-shortest path exists (we use the 
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following property of the (1+ε)-shortest path: if any path I is the (1+ε)-shortest path 

then I is the (1+ε’)-shortest path for each 'ε ε≥ ). If we set the precision for u to m 

decimal places (m is positive and an integer) then the MF_2_half algorithm is 

presented below. 

Algorithm MF_2_half 

 L:=0; R:=10m; u*:=infinity; 

 WHILE |L–R|>1 DO 

  u’:= L + ceil((R-L)/2); u:=u’/10m; ε:=u/(1-u); 

  Determine (1+ε)-shortest path from s1 to t1; 

   IF (1+ε)-shortest path from s1 to t1 exists THEN  

  R:=u’; u*:=u; 

  ELSE 

  L:=u’; 

  END IF; 

 END WHILE; 

 RETURN u*; 

 

If we denote with T(ε) complexity of the algorithm of finding the (1+ε)-

shortest path between s1 and t1 (see (Warburton, 1987; 

Papadimitriou & Yannakakis, 2000)), then the MF_2_half algorithm has  

a complexity ( )2log 10 ( )mO T ε⋅  (because the idea is similar to binary-searching for 

value x in a sorted table with 10m elements, where L and R denote, respectively, the 

left and right index of subtable range). For example, let the weighted graph be 

given in Fig. 3.12, s1=1, t1=5. The "ideal" vector of the criteria values is 

( ) ( )

* * * *
1 2 3, , 6, 5, 2c c c c= = . In the last column of Table 3.8 for each path I from s1=1 to 

t1=5 the smallest value of (1+ε) such that *( )F I c
ε

≤  is calculated. 

Let us set m=1 (we want to calculate u with a precision of one decimal place) for 

MF_2_half algorithm. In the first iteration,  L=0, R=10, u’=5, u=0.5, ε=1. We see in 

Table 3.8 that path (e.g. pA) for which the (1+ε)≤2 exists, hence this path is the 

(1+(ε=1))-shortest path from s1 to t1 and R:=5, u*:=0.5. In the second iteration,  L=0, 

R=5, u’=2, u=0.2, ε=0.25. Because path (e.g. pA) for which (1+ε)≤1.25 exists, hence 

this path is the (1+(ε=0.25))-shortest path from s1 to t1 and R:=2, u*:=0.2. In the third 

iteration, L=0, R=2, u’=1, u=0.1, ε=1/9. But the (1+(ε=1/9))-shortest path does not 

exist, hence L=1, R=2 and exit with u*=0.2. 

In chapter 3.3.4.6 we define problem MF_1 as a linear programming problem 

(MOSP_LP3) and problem MF_2 as MOSP_NP3. 
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3.3.4.4.  Method with hierarchization of objective functions 

 In this approach we order criteria functions according to their importance 

(in the set of criteria function we set the lexicographic order), so F1 describes the 

most important criterion, F2 – the second criterion according to importance, etc. 

Solution ( , ) ( , )h s d s d
j NI M i i M i i
≤

∈ ⊂  is found by solving the sequence of  

single-criteria optimization problems starting from the most important criterion 

(with index j=1, generating set M1(is,id)), next taking into account the second 

criterion according to importance (generating set M2(is,id)), etc. Calculations are 

continued as long as we achieve MN or at the previous stage s≤N it occurs that 

1SM = . Each Mj set narrows the previously obtained Mj-1 set of acceptable 

solutions and it is recurrently defined: 

{ }
1

1
( , )

( , ) : ( ) min ( ) ,  for 1,
( , )

( , ),                                                         for 0

s d
j

s d
j j j j j

s d I M i i
j

s d

I M i i F I F I j N
M i i

M i i j

−

−

∈

 ∈ =
=

= 
 =

 (3.54) 

The method of hierarchization of objective functions guarantees obtaining 

nondominated solutions, i.e. ( , )
h ND s dI M i i∈  (Ehrgott, 1997; Martins et al., 1999). 

For example, we considered the lexicographic solution (path) of the problem (3.16) 

with vectoral objective function ( ) ( ), ( )F I T I P I= , where P is defined as follows: 

 

( )

1 1
1 11 , 

1
1 1

1

1

( , )  
1

, , 
1 1 1
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,
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R R ri i c
s d

i i i i
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i i t

i i

P I i i e q c

q t e

λ

λ

−

−

=

− −

−

−

− ⋅

= = =

− ⋅

∑  
= =  

 

=

∏ ∏ ∑
  (3.55) 

 

There is an interesting question: how to find a solution in the following order 

of criteria (3.29) importance: T, P? Korzan in (Korzan, 1983a) proved (for K=1)  that 

if inside the set ( , )ND s dM i i  there exist many shortest paths, according to the 

criterion T with the same length T* then all of these have the same value of the P 

criterion. Because of this fact any node x with the same value of T on the part of the 

path from s1 can be considered at the next step of the Dijkstra’s algorithm. Hence, 

we can use Dijkstra’s algorithm with the modifications presented in Table 3.6, 

where: d(x) describes the value of function T for the path from s to x, c(x,y) is 

equivalent to cx,y , p(x) describes the value of the P function for the path from s1 to 

x, q(x,y,z) is equivalent to qx,y(z). 

Modification of the Dijkstra’s algorithm (Dijkstra_Lex2) has the same complexity as 

the original algorithm (with Fibonacci’s heaps), that is ( )logO V V A+ . Generally, 

finding lexicographic solutions (paths) is NP-hard (Garey & Johnson, 1979). 
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Table 3.6 Modification of the Dijkstra’s algorithm for finding the lexicographic solution  

with T, P objectives 

Standard Dijkstra’s algorithm Dijkstra_Lex2 algorithm 

Dijkstra( 

,G GG V A= , [c(u,v)]VxV, s1, t1) 

 

FOR EACH node v∈VG DO 

predecessor[v]:= null; 

d[v]:= +infinity; 

  d[s1]:= 0; 

  Q:= VG; 

END FOR;  

 

 

 

WHILE Q ≠ null DO 

  u:= Extract_Min(Q);  

  /u is such a node that  

  d[u]= min {d[v]:v∈Q}/ 

  Q:= Q \ {u}; 

  IF u=t1 THEN  

 RETURN; 

  END IF; 

  FOR EACH arc (u,v)∈AG  

  starting from u DO 

    IF d[v]>d[u]+c(u,v) THEN 

        

 

     

  d[v]:= d[u] + c(u,v); 

      predecessor[v]:= u; 

 

  END IF; 

END FOR; 

 END WHILE; 

Dijkstra_Lex2( 

,G GG V A= ,[c(u,v)]VxV, 

[q(u,v,z)]VxVxT, s1, t1) 

FOR EACH node v∈VG DO 

predecessor[v]:= null; 

d[v]:= +infinity; 

p[v]:= 0; 

  p[s1]:=1; 

  d[s1]:= 0; 

  Q:= VG; 

END FOR;  

 

WHILE Q ≠ null DO 

  u:= Extract_Min(Q);  

  /u is such node that 

  d[u]= min{d[v]:v∈Q}/ 

  Q:= Q \ {u}; 

  IF u=t1 THEN  

    RETURN; 

  END IF; 

  FOR EACH arc (u,v)∈AG  

  starting from u DO 

    IF d[v]>d[u]+c(u,v) OR  

       (d[v]=d[u]+c(u,v) AND   

       p[v]<p[u]*q(u,v,d[v]))  

    THEN 

    d[v]:= d[u] + c(u,v); 

    p[v]:= p[u] * q(u,v,d[v]); 

  predecessor[v]:= u; 

END IF; 

   END FOR; 

 END WHILE; 

3.3.4.5. Method with threshold values of criteria (Restricted Shortest Path 

Problem) 

Methods of threshold values (also known as restricted shortest paths problem 

(RSPP)) rely on the fact that some criteria functions have fixed critical values and 

they narrow the set of acceptable solutions. For example, problem (3.29) could be 

written as follows: to determine such a ( )
*( , ) ,s d s dI i i M i i∈ , that 

  ( ) ( )
*

( , ) ( , )
( , ) max ( , )

s d s d

s d s d

I i i M i i
P I i i P I i i

∈

=

     
(3.56) 
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with an additional restriction: ( ) 0( , )s dT I i i T≤ , where T0 – fixed threshold value of 

criterion ( )T i . Warburton in (Warburton, 1987) showed an 2( log )O V Z V  algorithm 

for solving the RSPP problem for two objectives (with integer and positive values), 

where Z is the upper constraint on the value of the second objective (the first 

objective is minimized). In chapter 3.3.4.6 we define the RSPP problem as 

mathematical programming problem (MOSP_LP4). 

3.3.4.6.  Types of the MOSP problems defined as mathematical programming 

problems 

For K=1 we will use the formulation of the MOSP problem as a linear 

programming problem as follows: 

   minCx →        (3.57) 

  subject to 

0

Bx d

x

=

≥         
(3.58) 

Here nj N A
C c

×

 =    is an objective matrix; ij V A
B b

×

 =    is a transition matrix for graph 

G and: bij=1 when the j-th arc starts in the i-th node, bij= −1 when the j-th arc ends 

in the i-th node, bij=0 otherwise; [ ]
1i V

d d
×

=  is a column vector, which may have 

three values:  di=1 when i=is, di=−1 when i=id; otherwise di=0; 
1j A

x x
×

 =   , 

{0}jx R+

∈ ∪ ; "min" describes minimum in the vectoral sense (in the sense of RD 

relation). Each of the i-th node, 1,i V=  has its equivalent in the VG set, each of the 

 j-th arc, 1,j A=  has its equivalent in the AG  set and each cnj cost for the j-th arc has 

its equivalent in the value of the arc function  fn(v,v’), , ' Gv v A∈ . For the case of 

N=1, we have a classical definition of the shortest path problem as a linear 

programming problem (because of the total unimodularity of matrix B and vector 

d). Sometimes, we will use the extended, equivalent form of the problem  

(3.57)-(3.58):  

1

min,    1,
A

nj j
j

c x n N
=

→ =∑

     
(3.59) 

  subject to 

1

,    1,

0,    1,

A

ij j i
j

j

b x d i V

x j A

=

= =

≥ =

∑

      

(3.60) 



3. Models and Algorithms for Movement Planning 

 

74 

 The problem of finding a compromise solution with parameter p=1, however 

nonlinear in its nature, can be formulated as a linear programming problem. Using 

notations from (3.59)-(3.60) the metrics (3.32) can be written as follows: 

*
1 1

1
1 min

N A

nj j
n jn

c x
c

= =

− →∑ ∑       (3.61) 

where * *
n nc F≡ . Let us accept following notations: 

*
1

1
max 0,1 ,      1,

A

n nj j
jn

z c x n N
c

=

  
= − = 

  
∑     (3.62) 

*
1

1
max 0, 1 ,      1,

A

n nj j
jn

z c x n N
c

=

  
= − = 

  
∑     (3.63) 

Then for each 1,n N=  the following conditions are fulfilled: 

*
1

1
1

A

n nnj j
jn

c x z z
c

=

− = +∑
      

(3.64) 

*
1

1
1

A

n nnj j
jn

c x z z
c

=

− = −∑        (3.65) 

0,      0,      0n n n nz z z z≥ ≥ ⋅ =

     (3.66) 

For this reason we obtain the following linear programming problem (MOSP_LP1): 

1

   min
N

n n

n

z z
=

+ →∑                 (3.67) 

  subject to 

*
1

1
1 ,    1,

A

n nnj j
jn

c x z z n N
c

=

− = − =∑

     
(3.68)

 
0,      0,      0,    1,n n n nz z z z n N≥ ≥ ⋅ = =     (3.69) 

and (3.60)         

We may omit conditions 0,    1,n nz z n N⋅ = = , but it can be shown that it does not 

extend the set of optimal solutions. The presented problem can be solved using the 

simplex algorithm. But the problem can be of large scale (number of variables 

equals N+A, number of boundaries equals N+V) and effectiveness of solving of this 

problem (using a simplex or ellipsoidal algorithm) is rather unacceptable. 

 According to the discussion conducted in chapter 3.3.4.2 and formula (3.44) 

the CSp=1 problem can be also defined as follows (MOSP_LP2): 
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*
1 1

1
min

N A

nj j
n jn

c x
c

= =

→∑ ∑       (3.70) 

subject to (3.60). 

 The CSp=2 problem of finding a compromise solution with parameter p=2 

(MOSP_NP1):     

2

*
1 1

1
1 min

N A

nj j
n jn

c x
c

= =

 
− → 

 
∑ ∑      (3.71) 

subject to (3.60). Unfortunately, the criterion function causes that the problem is 

nonlinear. 

 The CSp=∞ problem of finding a compromise solution with parameter p=∞ 

(MOSP_NP2), known as the max-ordering problem can be defined as follows: 

*{1,..., }
1

1
max 1 min

A

nj j
n N

jn

c x
c∈

=

− →∑     (3.72) 

subject to (3.60). The "max" in the criterion function causes that the problem is 

nonlinear. However, the problem can be formulated as linear ( minu → , subject to:

 ,    {1,..., }n nz z u n N+ ≤ ∀ ∈ , where , n nz z  defined in (3.62) and (3.63)). 

 The method with the metacriterion function of type I (MOSP_LP3) is defined 

as follows: 

*
1 1

min
N A

n
nj j

n jn

c x
c

α

= =

→∑ ∑      (3.73) 

subject to: 
1

1
N

n
n

α

=

=∑ , 0,   1,n n Nα ≥ =  and (3.60). 

 To define the MOSP problem with the metacriterion function of type II, let us 

note that function ( )nF I  from (3.51) is equivalent to 
*

1

n
A

nj j
j

c

c x
=

∑
, hence we obtain 

(MOSP_NP3): 

minu →        (3.74) 

  subject to  

*

1

1 ,    1,n
A

nj j
j

c
u n N

c x
=

− ≤ =

∑
      (3.75) 

and (3.60).          

The first type of constraint causes that the problem is nonlinear. 
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 The method with critical values of criteria (MOSP_LP4) known also as the 

restricted shortest path problem can be formulated as follows: 

1

min
A

Lj j
j

c x
=

→∑       (3.76) 

  subject to 

1

,    1, ,  
A

ij j i
j

c x g i N i L
=

≤ = ≠∑       (3.77) 

and (3.60)          

where ( )1 , , ...,i N i L
g g g g

≠

=  describes the threshold values of each of the criteria, and 

L denotes the index of the criterion to minimize. Let us note that if any component 

of g is not an integer then the constraint 0,    1,jx j A≥ =  must be replaced by 

{0,1},    1,jx j A∈ = . 

In Table 3.7 we present properties of the MOSP problems formulated as 

mathematical programming problems. 

 

Table 3.7. Properties of the MOSP problems formulated as mathematical programming problems 

Problem Type of mathematical  

programming problem 

Number of  

decision variables 

Number of 

constraints 

MOSP_LP1 Linear 2N+A V+N 

MOSP_LP2 Linear A V 

MOSP_LP3 Linear A V 

MOSP_LP4 Linear A V+N-1 

MOSP_NP1 Nonlinear A V 

MOSP_NP2 Nonlinear A V 

MOSP_NP3 Nonlinear A+1 V+N 

3.3.4.7. Example of the GAMS model for the MOSP_LP3 problem 

The source code of the the GAMS3 model for solving the MOSP_LP3 problem 

(the first row in Table 3.9, equation (3.73) and (3.60)) for the G graph from Fig. 3.12 

is presented below. We set the following equivalence between notations being 

used in the MOSP_LP3 model and in the source code of the GAMS model (notation 

x≡y describes that x in the GAMS model is equivalent to y in the MOSP_LP3 

model): c(n,j) njc≡ , b(i,j) ijb≡ , *c_opt(n) nc≡ , alfa(n) nα≡ , x(j) jx≡ , d(i) id≡ . 

 

 

 

                                                 
3 General Algebraic Modelling System (Rosenthal, 2010). 
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Sets 

i                nodes of the graph G 

/1, 2, 3, 4, 5/ 

 

j                arcs of the graph G 

/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/ 

 

n       criteria 

/1, 2, 3/ 

 

Parameters 

c(n,j)           cost matrix of the graph G; 

c('1','1')= 1; 

c('1','2')= 3; 

c('1','3')= 5; 

c('1','4')= 3; 

c('1','5')= 2; 

c('1','6')= 4; 

c('1','7')= 2; 

c('1','8')= 6; 

c('1','9')= 3; 

c('1','10')= 2; 

c('2','1')= 3; 

c('2','2')= 4; 

c('2','3')= 2; 

c('2','4')= 2; 

c('2','5')= 4; 

c('2','6')= 2; 

c('2','7')= 3; 

c('2','8')= 2; 

c('2','9')= 2; 

c('2','10')= 5; 

c('3','1')= 1; 

c('3','2')= 1; 

c('3','3')= 1; 

c('3','4')= 1; 

c('3','5')= 1; 

c('3','6')= 1; 

c('3','7')= 1; 

c('3','8')= 1; 

c('3','9')= 1; 

c('3','10')= 1; 

 

Parameters 

b(i,j)           element of transition matrix for graph G; 

*  =1 - when the arc number j starts in the i-th node 

* =-1 - when the arc number j ends in the i-th node 

*  =0 - otherwise; 

 

b('1','1')= 1; 

b('1','2')= 1; 

b('1','3')= 1; 

b('2','1')= -1; 

b('2','4')= 1; 

b('2','7')= -1; 

b('2','8')= 1; 
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b('3','2')= -1; 

b('3','4')= -1; 

b('3','6')= -1; 

b('3','5')= 1; 

b('3','7')= 1; 

b('3','9')= 1; 

b('4','3')= -1; 

b('4','5')= -1; 

b('4','6')= 1; 

b('4','10')= 1; 

b('5','8')= -1; 

b('5','9')= 1; 

b('5','10')= 1; 

 

Parameters 

c_opt(n)         optimal value of the n-th criteria function; 

c_opt('1')= 6; 

c_opt('2')= 5; 

c_opt('3')= 2; 

 

Parameters 

alfa(n)          weight of the n-th criteria function; 

alfa('1')= 1/3; 

alfa('2')= 1/3; 

alfa('3')= 1/3; 

 

Parameters 

d(i)             parameter to set source and destination nodes; 

* = 1 for source node, 

* =-1 for destination node, 

* =0 otherwise; 

 

d('1')= 1; 

d('2')= 0; 

d('3')= 0; 

d('4')= 0; 

d('5')= -1; 

 

Variables 

x(j) 

z; 

 

Positive variable  x; 

 

Equations 

objective       objective function (3.73) 

subj(i)         condition (3.60); 

 

objective.. z =e= sum((n,j), (alfa(n)/c_opt(n))*c(n,j)*x(j)); 

subj(i).. sum(j,x(j)*b(i,j))=e=d(i); 

 

Model mosp_lp3 /all/ ; 

 

option limrow=16; 

*number of rows in output file 
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option reslim=10000; 

*10000 seconds for calculations; 

 

option iterlim=100000000; 

* upper bound on iteration numbers 

 

option lp=Cplex; 

* solver Cplex 

 

solve mosp_lp3 using lp minimizing z; 

display x.l, z.l; 

 

By solving this model using the GAMS/CPLEX 12.2 solver we obtain: 

x(1)=x(8)=1 (values of x variable for remaining parameters are equal 0), and the 

value of the objective function equals 1.055 (see also Table 3.9). 

3.3.5. Numerical Examples and Analysis 

In Fig. 3.12 we present a graph, which will be used as a running example of 

defined the MOSP problems with three-dimensional vector of costs (Tarapata, 

2007d). Values of all functions are minimized. 

In Table 3.8 we present the set of paths from s1=1 to t1=5 for the graph from 

Fig. 3.12 and their multidimensional properties. In the last row of the table optimal 

costs for each of the objectives are presented ( * (6, 5,2)c = ). In the last column of 

Table 3.8 for each of the path I from s1=1 to t1=5 the smallest value of (1+ε) such 

that *( )F I c
ε

≤  is calculated. For example, for pA we have: 1+ε=max{7/6, 5/5, 

2/2}=7/6. Table 3.9 contains optimal multidimensional paths for the graph from 

Fig. 3.12 (s1=1, t1=5) using different types of the defined MOSP problems. 

 

 

1

2

3

4

5

1

(1,3,1)

3

(5,2,1)

2

(3,4,1)

7

(2,3,1)
4

(3,2,1)

6

(4,2,1)

5

(2,4,1)

8

(6,2,1)

10

(2,5,1)

9

(3,2,1)

 

Fig. 3.12. Exemplified graph with multidimensional costs: on top of each arc its number is described 

and on the bottom − three-component arc cost 
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Table 3.8. Set of paths from s1=1 to t1=5 for the graph from Fig. 3.12 and their multidimensional 

properties 

Path name I Path as a sequence of nodes Cost vector F(I) of path 1+ε 

pA 1-2-5 (7, 5, 2) 7/6 

pB 1-2-3-5 (7, 7, 3) 3/2 
pC 1-2-3-4-5 (8, 14, 4) 14/5 

pD 1-3-5 (6, 6, 2) 6/5 

pE 1-3-2-5 (12, 8, 3) 12/6 

pF 1-3-4-5 (7, 9, 3) 9/5 
pG 1-4-5 (7, 7, 2) 7/5 

pH 1-4-3-5 (12, 6, 3) 12/6 

pI 1-4-3-2-5 (17, 9, 4) 17/6 

Vector of optimal costs: * * *

1 2 3
6, 5, 2c c c= = =  

 

Table 3.9. Optimal multidimensional paths for the graph from Fig. 3.12 (s1=1, t1=5) 

Problem Optimal path Cost of path 

MF_1, 1/3,  1,3n nα = =

 
⇔ MOSP_LP3 pA 1.055 

MF_1, 
1 2 3

0.66, 0.17, 0.17α α α= = =

  
⇔ MOSP_LP3 pD 1.034 

CSp=1 ⇔ MOSP_LP2 pA 3.167 

RSPP⇔MOSP_LP4, L=1, g2=
*

2
1.2c , g3=

*

3
1.2c  pD 6.0 

RSPP⇔MOSP_LP4, L=1, g2=
*

2
1.1c , g3=

*

3
1.1c  pA 7.0 

RSPP⇔MOSP_LP4, L=1, g2=
*

2
c , g3=

*

3
c  null +infinity 

CSp=2 ⇔ MOSP_NP1 pA 0.139 

CSp=∞
 ⇔ MOSP_NP2 pA, pD 0.333 

MOSP_NP3 pA u=1/6 

 

In Fig. 3.13, Fig. 3.14 and Fig. 3.15 we present weighted terrain-based grid 

graphs with a dimension of 50×200 nodes (squares) representing the 

neighbourhood of Radom, Poland. Each of the graphs has an arc count of A≈3,95V, 

because only north-east-south-west moves are permitted from a node. Such graphs 

represent a model of the battlefield in a computer simulation game (Tarapata, 

2003a). For this example, each terrain square has a size of 200×200m,  so graphs 

represent a piece of terrain with a dimension of 10×40km. Colours represent values 

of criteria: c1 for Fig. 3.13 − the light colour of the node (square) describes open 

terrain (well passable), the dark colour describes obstacles (forests, lakes, rivers, 

buildings): the darkest is the colour of least passable terrain; c2 for Fig. 3.14 − the 

colour of the node (square) describes ability to camouflage: the darker the colour, 

the smaller the ability to camouflage; c3 for Fig. 3.15 − values of criterion c3 equals 1 

for all nodes. The white colour on all figures describes the optimal path from the 

left-top corner to the right-bottom. Let us note that finding the optimal path in  

a sense of: c1 gives the fastest path, c2 gives the best "camouflaged" path, c3 gives 

the shortest geometric path (with north-east-south-west moves only from a given 
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node). Without loss of generality we can assume that functions c1, c2, c3 are 

described on the nodes (squares) instead of arcs (if it is necessary to obtain a graph 

with arc functions we can construct a dual graph ,GT GTGT V A=  to the considered 

graph ,G GG V A= , where GT GV A=  and each arc ( , ) GT G Ga b A A A∈ ⊂ ×  is created 

when two arcs a, b in G have a common node (are simultaneously adjacent with 

any node); then in GT functions c1, c2, c3 are described on arcs). 

 In Table 3.10 we present experimental results of average running times (in 

seconds) of the modified Dijkstra’s algorithm and the GAMS/CPLEX 12.2 for the 

MF_1 problem (αi=1/N, i=1,…,N). Graphs with a node count of 1000*x 

(x=1,2,…,10) are cut from the graph with 50×200 nodes (Fig. 3.13, Fig. 3.14, 

Fig. 3.15) and have a dimension of 50×(20*x) nodes.  

 

 

Fig. 3.13. Weighted terrain-based grid graph with a dimension of 50x200 nodes (squares). Colour 

represents value of criterion c1: the light colour of the nodes (square) describe open terrain, the dark 

colour describes obstacles (forests, lakes, rivers, buildings). The white colour describes the optimal 

path from the left-top to the right-bottom corner 

 

 

Fig. 3.14. Weighted terrain-based grid graph with a dimension of 50x200 nodes (squares). Colour 

represents value of criterion c2: the colour of the node (square) describes the ability to camouflage: 

the darker the colour the smaller the ability to camouflage. The white colour describes the optimal 

path from the left-top to the right-bottom corner 
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Fig. 3.15. Weighted terrain-based grid graph with a dimension of 50x200 nodes (squares). All 

weights are identical (the c3 criterion value equals 1). The white colour describes the optimal path 

from the left-top to the right-bottom corner 

 

 We can see a clear advantage of the modified Dijkstra’s algorithm with 

relation to CPLEX 12.2 solving the MF_1 problem as a linear programming 

problem MOSP_LP3: using the modified Dijkstra’s algorithm with its fast 

implementations is time-effective. It is especially visible in Fig. 3.16 where we 

present a decimal logarithm of the average running times (in milliseconds) of these 

two algorithms. 

 

Table 3.10. Average running times (in seconds) of the modified Dijkstra’s algorithm and the 

GAMS/CPLEX 12.2 solver for the MF_1 problem (αi=1/N, i=1,…,N) 

Count of nodes  
(V) 

Modified Dijkstra’s 
alg. 

MF_1 solved as MOSP_LP3 

N=1 N=2 N=3 N=1 N=2 N=3 
1 000 0.03 0.08 0.11 0.76 2.31 4.39 

2 000 0.10 0.29 0.38 2.82 8.81 12.40 

3 000 0.25 0.71 0.96 6.52 21.20 29.14 

4 000 0.37 1.10 1.47 16.40 52.55 72.30 

5 000 0.59 1.74 2.33 30.41 98.12 136.22 

6 000 0.86 2.55 3.42 50.79 161.94 225.67 

7 000 1.16 3.44 4.59 74.61 238.27 333.80 

8 000 1.55 4.57 6.12 109.24 348.13 483.76 

9 000 1.96 5.82 7.77 134.78 432.47 620.94 

10 000 2.43 7.24 9.66 179.61 564.42 790.97 

 

Fig. 3.17 presents dependencies between the average running times (in 

milliseconds) of the GAMS/CPLEX 12.2 solver and the beta coefficient for solving 

the MOSP_LP4 problem for two graphs with V=1 000 (50×20) and V=2 000 (50×40) 

nodes. In the MOSP_LP4 problem we minimize the c1 criterion subject to upper 

constraints (g2 and g3) on values of criteria c2 and c3 as follows: *
2 2g beta c= ⋅  and 

(g3=infinity, *
3 3g beta c= ⋅ ), where *

2 6 964c =  and *
3 68c =  for V=1 000; *

2 6 061c =  and 

*
3 88c =  for V=2 000.  
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Fig. 3.16. Decimal logarithm of average running times (in milliseconds) of the modified Dijkstra’s 

algorithm (MF_1 problem�MDijk) and the GAMS/CPLEX 12.2 (MOSP_LP3 problem�LP) 

(αi=1/N, i=1,…,N) 
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Fig. 3.17. Decimal logarithm of average running times (in milliseconds) of the GAMS/CPLEX 12.2 

solver solving  the MOSP_LP4 problem for two graphs with V=1 000 and V=2 000 nodes, 
*

2 2g beta c= ⋅  and (
3 infinityg = , *

3 3g beta c= ⋅ ) 

 

In Fig. 3.18 we present dependencies between values of the objective function 

and beta coefficient for the MOSP_LP4 problem. Let us note that, generally, the 

greater the value of beta the smaller running time of the model in the 

GAMS/CPLEX 12.2 solver (and the smaller value of the objective functions, 

Fig. 3.18), but the functions from Fig. 3.17 are not monotonic. The values of the 
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running times for the MOSP_LP4 problem are few times greater than for the 

MOSP_LP3 problem solved using the GAMS/CPLEX 12.2 solver (compare 

Fig. 3.17 and Fig. 3.16). For example, the running time for V=2 000 is about 

105/102.8 times greater than for solving the MOSP_LP3 problem. These results are 

clear: the smaller restrictions on criteria c2 and c3 (that means: the greater value of 

beta) the smaller running time. Moreover, the greater value of the running time 

results from the fact that *

i ig beta c= ⋅  is not an integer (except for beta=1.25 and 

beta=1.5 for *
2 6 964c = , V=1 000) and MOSP_LP4 (as a linear programming 

problem) becomes harder to solve the binary programming problem. For the 

beta≥1.35 value of the objective function (based on c1) does not change, because it 

achieves an optimal value ( *
1 605c =  for V=1 000, *

1 713c =  for V=2 000). 
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Fig. 3.18. Values of objective functions for the MOSP_LP4 problem for two graphs with V=1 000 and 

V=2000 nodes, *
2 2g beta c= ⋅  

and (
3 infinityg = , *

3 3g beta c= ⋅ )  

3.4. Disjoint Paths Planning (DP) 

3.4.1. Description of the Problem 

The disjoint paths (DP) problem is a well-known network optimization 

problem. The problem relies on such determining paths for a few objects that no 

common part of paths for objects (arcs or nodes belonging to paths) are accepted. 

There are two classification categories of the problem: (DP1) from the point of view 

of paths disjointness type; (DP2) from the point of view of source and destination 

type. In the (DP1) category the problem is divided into two subproblems: (DP1.1) 

arc-disjoint paths (no common arcs are accepted) and (DP1.2) node-disjoint paths 
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(no common nodes are accepted; in selected cases, common source and destination 

nodes can be accepted). It is easy to note that the following sentence is true: if two 

(or more) paths are node-disjoint then they are arc-disjoint as well. Reverse relation 

can not be true. In the (DP2) category the problem is divided into a few 

subproblems: (DP2.1) from a single source to a single destination; (DP2.2) from  

a single source to a set of destination ones; (DP2.3) from a set of sources to  

a single destination; (DP2.4) from a set of sources to a set of destinations; (DP2.5) 

from a vector of sources to a vector of destinations. What is the difference between 

these models? When we have K-component vectors of sources ( 1 2, , ..., Ks s s s= ) 

and destinations ( 1 2, , ..., Kt t t t= ) then we must find disjoint paths from s1 to t1 and 

from s2 to t2, and from s3 to t3, etc., hence the K disjoint paths between K pairs of 

nodes. When we have K-element sets of sources and destinations we must find K 

disjoint paths between any of the sources and destinations. In general, the case 

with the vector of sources and/or destinations is more complicated to solve then 

with a set of them. 

The disjoint paths problem may be related to the following practical 

applications: VLSI layout designing (Aggarwal et al., 2000), routing in 

telecommunication networks (in particular: optical) (Aggarwal et al., 2000; Ahuja et 

al., 1993; Andersen et al., 2004; Bhandari, 1999; Jongh et al., 1999; Li et al., 1992; 

Perl & Shiloach; 1978, etc.), manoeuvre (transport) planning of military 

detachments (or vehicles) (Tarapata, 1998; 2008e; 2009a; Tarapata & Wroclawski, 

2010g; 2011d), tasks scheduling (trasmission) in a parallel or a distributed 

computing system (Tarapata, 1999a; 2000e), couriers problem (Tarapata, 1998). For 

example, in military applications, to increase redeployment safety, it is often 

required that paths for moved objects (convoys) should be independent (disjoint). 

These disjoint paths condition results from the fact, that during convoy 

redeployment the potential opponent may try to destroy structure elements of the 

network (for example, crossings (node of the network) or parts of the road, bridges 

(arcs of the network)) as well as convoys being redeployed to make impossible the 

achievement destinations and intended goals by the convoys. 

It is known (Even et al., 1976; Perl & Shiloach; 1978) that the optimization 

problem for finding K>1 shortest disjoint paths between K pairs of distinct nodes 

(DP2.5 problem) is NP-hard (even for K=2). The problem of finding two or more of 

disjoint paths between specified pairs of terminals (network nodes) has been well 

studied. The first significant result in this subject has been presented in (Suurballe, 

1974). Presented in this paper is the algorithm for the single source – single 

destination case having a complexity of O(Alog(1+A/N)V), where V – number of 

network nodes, A – number of network arcs. This procedure solved the problem as 

a special case of a minimum-cost network flow problem using two efficient 

implementations of the Dijkstra’s single–source shortest path algorithm. An 
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efficient algorithm to solve the problem for the single–source all destinations  

node–disjoint paths was given in (Suurballe & Tarjan, 1984). In this study, the 

disjoint pairs of paths from the source node to all the other nodes in the network 

are determined using a single Dijkstra–like calculation to derive an algorithm 

having a time complexity of O(Alog(1+A/V)V). Perl and Shiloach (Perl & Shiloach; 

1978) studied the complexity of finding two disjoint paths between two different 

sources and two different destinations in directed acyclic graphs (DAGs). They 

proposed an algorithm, which is easily generalized in finding the shortest pair of 

paths (measured by the total path length) or finding tuples of d disjoint paths 

between distinct specified terminals; in the latter case the running time would 

become O(AVd-1). The author of the paper (Eppstein, 1995) considered the problem 

of finding pairs of node-disjoint paths in DAGs, either connecting two given nodes 

to a common ancestor, or connecting two given pairs of terminals. He showed how 

to find the K pairs with the shortest combined length in a time of O(AV+K). He also 

showed how to count all such pairs of paths in O(AV) arithmetic operations. These 

results can be extended to finding or counting tuples of d disjoint paths in a time of  

O(AVd-1+K) or O(AVd-1). Authors of the paper (Li et al., 1990) give  

a pseudo-polynomial algorithm for an optimization version of the two-path 

problem, in which the length of the longer path must be minimized. In the other 

paper of these authors (Li et al., 1992) the difficult bifurcated routing problem was 

described. They solved the problem when each path corresponds to the routing of 

a different commodity so that each arc is endowed with a cost depending on the 

path to which it belongs. In the paper (Jongh et al., 1999) the problem of finding 

two node disjoint paths with minimum total cost in the network was studied, in 

which a cost is associated with each arc or edge and a transition cost is associated 

with each node. This last cost is related to the presence of two technologies on the 

network and is incurred only when a flow enters and leaves the corresponding 

node or arcs of different types. A good study for a very important problem of 

finding disjoint paths in planar graphs was presented in paper 

(Schrijver & Seymour, 1992). A very interesting approach to the time-dependent 

shortest pair of disjoint paths problem was discussed in (Sherali et al., 1998). In 

(Tarapata, 1997; 1998; 1999a; 2000e) a new approach to the K disjoint path problem 

was proposed: it is based on building, starting from the initial network, the  

so-called K-nodes (K-dimensional vectors of network nodes), K-arcs and "virtual"  

K-network, and finding in such a K-network the shortest K-path (K-dimensional 

vector of simple paths) using the original Dijkstra-like algorithm. The specific 

problem has been considered in the papers. It deals with the parallel or distributed 

computing system, in which we want to send (or process), in generality, K (K>1) 

tasks from the Ks (Ks=1 or Ks=K) computer-nodes (local servers) to the Kd (Kd=1 or 

Kd=K) destination ones through disjoint paths to minimize sending (or processing) 
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the time of all tasks and simultaneously to ensure task sending (or processing) on 

the most reliable paths (when the elements of the network structure are unreliable). 

One of the methods being proposed to solve the problem is finding the best paths 

for K objects iteratively using methods for finding the m-th (1st, 2nd, etc.) best path 

for each of the K objects (Eppstein, 1999) and visiting specified nodes (Ibaraki, 

1973). Parallelization of the method is presented in (Tarapata, 2000a). 

3.4.2. Definition of the Problem 

3.4.2.1. Formulation of the node-disjoint paths visiting specified nodes problem 

The mesh graph, which is the basic data for the problem can model, for 

example, regular grid of terrain squares used to plan off-road (cross-country) 

movement (see Fig.2.3b). This grid divides the terrain space into squares of equal 

size. Each square is homogeneous from the point of view of terrain characteristics 

(dimensions, degree of slowing down the velocity, ability to camouflage, degree of 

visibility, etc.). The structure of such a terrain can be represented by a "mesh" 

digraph ,G GG V A= , VG − set of graph nodes (VG describes the centre of terrain 

squares), AG – set of graph arcs, AG⊂VG×VG , A= GA . Arcs are allowed between 

geographically adjacent squares only (see Fig.2.3b). 

To define the considered problem let us accept the following descriptions: 

1 2, , ..., Ks s s s=  − vector of source nodes, 1 2, , ..., Kt t t t=  − vector of destination 

nodes, [ ]ink V M K
a

× ×

=A  − matrix of source and destination nodes via indirect nodes 

for each object (a path for each object is divided into M=N+1 parts (segments) from 

one node to other indirect nodes, N − number of indirect nodes): aink=1 if the i-th 

node is the n-th source node for the k-th object, aink=-1 if the i-th node is the n-th 

destination node for the k-th object; aink=0 otherwise; additionally, the following 

conditions must be satisfied: ai1k=1⇔i=sk (it means that node sk must be the source 

node of the first segment of the path for the k-th object), ai1k=-1⇔i=i1(k) (the first 

indirect node i1(k) for the k-th object is the destination node for the first segment of 

the path for this object), aiMk=1⇔ i=iN(k) (the last indirect node iN(k) for the k-th 

object is the source node for the last segment of the path for this object),  

aiMk=-1⇔i=tk, (node tk is the destination node of the last segment of the path for the 

k-th object), ( 1)
{1,..., }

1 1ink i n k
n N

a a
+

∈

∀ = − ⇒ =  (the destination node of the n-th path 

segment for the k-th object is, simultaneously, the source node of (n+1)-st segment 

for this path); [ ]ik V K
h

×

=H  − matrix of nodes (generating subgraphs of G), which are 

allowed to be taken into account during paths determination for each object: hik=1 

if the i-th node can be taken into account during paths determining for the k-th 

object, hik=0 - otherwise (in particular: i=sk⇒hik=1, i=tk⇒hik=1); ij V A
out

×

 =  OUT − 
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binary crossing matrix of arcs starting in nodes of G: outij=1 if the j-th arc starts in 

the i-th node, outij=0 - otherwise; ij V A
in

×

 =  IN  − binary crossing matrix of arcs 

ending in nodes of G: inij=1 if the j-th arc ends in the i-th node, inij=0 − otherwise; 

1j A
d

×

 =  D  − vector of arcs’ cost; jnk A M K
x

× ×

 =  X  − decision variables matrix, xjnk=1 

if the j-th arc of G belongs to the n-th segment of the path for the k-th object, 

otherwise xjnk=0 . 

We can formulate two problems (NDRP-Sum and NDRP-Max, both are  

a modification of the DP2.5 problem), which differ in the objective function. The 

first one (NDRP-Sum) minimizes the total cost of all (K) disjoint paths visiting 

specified nodes in the restricted area and the second one (NDRP-Max) minimizes 

the maximal cost of any of the K disjoint paths. 

The optimization NDRP-Sum problem of determining the K shortest node-disjoint 

paths via some indirect nodes in the restricted area can be defined as follows: 

  
1 1 1

min
A M K

j jnk
j n k

d x
= = =

→∑∑∑      (3.78) 

 with constraints: 

( )

1

,        1, ,  1, ,  1,
A

ij ij jnk ink
j

out in x a i V n M k K
=

− = = = =∑   (3.79) 

1 1 1

1,               1,
A M K

ij jnk
j n k

out x i V
= = =

≤ =∑∑∑     (3.80) 

1 1 1

1,                 1,
A M K

ij jnk
j n k

in x i V
= = =

≤ =∑∑∑     (3.81) 

1 1

,                 1, ,  1,
A M

ij jnk ik
j n

out x h i V k K
= =

≤ = =∑∑     (3.82) 

1 1

,                   1, ,  1,
A M

ij jnk ik
j n

in x h i V k K
= =

≤ = =∑∑    (3.83)   

0,                                   1, ,  1, ,  1,jnkx j A n M k K≥ = = =   (3.84) 

The objective function (3.78) describes the total cost of K disjoint paths, which is 

minimized. The first constraint (3.79) assures that for each node (excluding the 

source and destination nodes), for each object and for each path segment, the sum 

of arcs starting from the node and the sum of arcs ending at the node, which are 

selected to the path is the same (further constraints assure that this value is ≤1). For 

the source node this difference is equal 1 (only the single path segment can start at 

the source node) and for the destination node -1 (only the single path segment can 

end at the destination node). Constraints (3.80) and (3.81) supplement constraint 
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(3.79) to assure that for each node only, at least one arc starting and ending at that 

node can belong to any path. Constraints (3.82) and (3.83) guarantee that only 

allowed nodes are on the path for the k-th object (definition of the restricted area). 

Additionally, it can be observed that the matrix of constraint coefficients (built on 

the basis of the left sides of the constraints (3.79)-(3.83)) is totally unimodular 

(proof of this property is presented in (Tarapata, 2007a)) and aink, hik (right sides) 

are integer, hence we can obtain the continuous linear programming problem 

(instead of the binary linear programming) and constraint (3.84) (instead xjnk 

∈{0,1}). In the presented optimization problem we have the AMK decision 

variables and V(MK+K+2) constraints (excluding (3.84)). Let us note that we could 

use transition matrix ij V A
B b

×

 =   of graph G (defined in chapter 3.3.4.6) instead of 

the semi-transition matrices OUT and IN. In such a case we could have the 

following constraints: 

(3.79) =>
1

A

ij jnk ink
j

b x a
=

=∑ , (3.80) => 
1 1 1

1
A M K

ij jnk
j n k

b x
= = =

≤∑∑∑ , (3.81) =>
1 1 1

1
A M K

ij jnk
j n k

b x
= = =

≥ −∑∑∑ , 

(3.82) => 
1 1 1

A M K

ij jnk ik
j n k

b x h
= = =

≤∑∑∑ , (3.83) => 
1 1 1

A M K

ij jnk ik
j n k

b x h
= = =

≥ −∑∑∑ .  

Matrices OUT and IN have been used because of computational reasons without 

increasing computational complexity of the problem. 

 The NDRP-Max problem can be formulated similarly to the NDRP-Sum 

problem, excluding the objective function, which has a form: 

{1,..., }
1 1

max min
A M

j jnk
k K

j n

d x
∈

= =

→∑∑       (3.85) 

and with constraints (3.79)-(3.84). 

Unfortunately, the function (3.85) is nonlinear and the NDRP-Max problem is 

nonlinear. We can use the equivalent formulation of the problem to avoid its 

nonlinearity: 

minu →        (3.86) 

with constraints: 

1 1

,        1,
A M

j jnk
j n

d x u k K
= =

≤ =∑∑       (3.87) 

   and (3.79)-(3.84). 

Formulation (3.86)-(3.87) of the NDRP-Max problem makes it a linear  

programming problem. 
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3.4.2.2. Example of the GAMS model for the NDRP-Sum problem 

Below we present the GAMS model for the K=2 NDRP-Sum problem from 

s=(1,2) to t=(7,8) in graph G from Fig. 3.19.  

 

Fig. 3.19. Graph G for the K=2 disjoint paths GAMS model: on top of each arc its number is 

described and on the bottom − arc cost 

 

We set the following equivalence between notations being used in model of 

the NDRP-Sum problem (defined by (3.78)-(3.84)) and in the source code of the 

GAMS model (notation x≡y describes that x in the GAMS model is equivalent to y 

in the NDRP-Sum model): d(j) jd≡ , out(i,j) ijout≡ , in(i,j) ijin≡ , a(i,n,k) inka≡ , 

x(j,n,k) jnkx≡ . 

 
Sets 

i              set of nodes of graph G 

/1, 2, 3, 4, 5, 6, 7, 8/ 

 

j              set of arcs of graph G 

/1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 

19, 20, 21, 22/ 

 

k       set of objects (paths) 

/1, 2/ 

 

n       set of indirect nodes 

/1, 2/ 

 

Parameters 

d(j)           arcs cost vector; 

 d('1')= 1 ; 

 d('2')= 1; 

 d('3')= 3 ; 

 d('4')= 3 ; 

 d('5')= 4 ; 

 d('6')= 4 ; 
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 d('7')= 2 ; 

 d('8')= 2 ; 

 d('9')= 1 ; 

 d('10')= 1; 

 d('11')= 1 ; 

 d('12')= 1 ; 

 d('13')= 6 ; 

 d('14')= 6 ; 

 d('15')= 4 ; 

 d('16')= 4 ; 

 d('17')= 3 ; 

 d('18')= 3 ; 

 d('19')= 2 ; 

 d('20')= 2; 

 d('21')= 1; 

 d('22')= 1; 

 

Parameters 

out(i,j)   binary crossing matrix of arcs starting in nodes of G; 

*  1 - if the j-th arc starts in the i-th node 

*  0 - otherwise; 

 

out('1','1')= 1 ; 

out('1','3')= 1 ; 

out('2','5')= 1 ; 

out('2','7')= 1 ; 

out('3','2')= 1 ; 

out('3','10')= 1 ; 

out('3','13')= 1 ; 

out('4','9')= 1 ; 

out('4','15')= 1 ; 

out('4','17')= 1 ; 

out('4','19')= 1 ; 

out('4','12')= 1 ; 

out('4','6')= 1 ; 

out('4','4')= 1 ; 

out('5','9')= 1 ; 

out('5','11')= 1 ; 

out('5','21')= 1 ; 

out('6','14')= 1 ; 

out('6','16')= 1 ; 

out('7','18')= 1 ; 

out('8','20')= 1 ; 

out('8','22')= 1 ; 

 

Parameters 

in(i,j)      binary crossing matrix of arcs ending in nodes of G; 

*  1 - if the j-th arc ends in the i-th node 

*  0 - otherwise; 

 

in('1','2')= 1 ; 

in('1','4')= 1 ; 

in('2','6')= 1 ; 

in('2','8')= 1 ; 

in('3','1')= 1 ; 

in('3','9')= 1 ; 
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in('3','14')= 1 ; 

in('4','3')= 1 ; 

in('4','5')= 1 ; 

in('4','11')= 1 ; 

in('4','20')= 1 ; 

in('4','18')= 1 ; 

in('4','16')= 1 ; 

in('4','10')= 1 ; 

in('5','7')= 1 ; 

in('5','12')= 1 ; 

in('5','22')= 1 ; 

in('6','13')= 1 ; 

in('6','15')= 1 ; 

in('7','17')= 1 ; 

in('8','19')= 1 ; 

in('8','21')= 1 ; 

 

Parameters 

a(i,n,k)      source and destination nodes via indirect nodes; 

*a(i,n,k)=1   if the i-th node is the n-th source node for the  

       k-th object, 

*a(i,n,k)=-1  if the i-th node is the n-th destination node for 

       the k-th object, 

*a(i,n,k)=0   otherwise; 

 

a('1','1','1')=1; 

a('7','1','1')=-1; 

a('2','1','2')=1; 

a('8','1','2')=-1; 

 

Variables 

x(j,n,k) 

z; 

 

Positive variable  x;  

 

Equations 

cost               total paths cost (eq. (3.78)) 

constr1(i,n,k)      eq. (3.79) 

constr2(i)          eq. (3.80) 

constr3(i)          eq. (3.81); 

 

cost.. z =e= sum((j,n,k), d(j)*x(j,n,k)); 

constr1 (i,n,k).. sum(j, (out(i,j)-in(i,j))*x(j,n,k))=e=a(i,n,k);   

constr2 (i)..sum((j,n,k), out(i,j)*x(j,n,k))=l=1; 

constr3 (i)..sum((j,n,k), in(i,j)*x(j,n,k))=l=1; 

 

Model DisjPathsSum /all/; 

 

option limrow=16; 

*number of rows in output file 

 

option reslim=10000; 

*10000 seconds for calculations; 

 

option iterlim=100000000; 
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* upper bound on iteration numbers 

 

option lp=Cplex; 

* solver Cplex 

 

solve DisjPathsSum using lp minimizing z; 

display x.l, z.l; 

 

By solving this model using the GAMS/CPLEX 12.2 solver we obtain:  

 

----    154 VARIABLE x.L   

               1           2 

1 .1       1.000 

7 .1                   1.000 

10.1       1.000 

17.1       1.000 

21.1                   1.000 

 

----    154 VARIABLE z.L                   =       10.000 

 

It means that for the 1st object we have obtained the path (as a sequence of arcs):  

1-10-17 and for the 2nd one: 7-21. Total cost of this K=2 node-disjoint paths =10. 

3.4.2.3. Example of the GAMS model for the NDRP-Max problem 

Below we present the GAMS model for the K=2 NDRP-Max problem from 

s=(1,2) to t=(7,8) in graph G from Fig. 3.19. We set the following equivalence 

between notations being used in the model of the NDRP-Max problem (defined by 

(3.78)-(3.84) and (3.86), (3.87)) and in the source code of the GAMS model (notation 

x≡y describes that x in the GAMS model is equivalent to y in the NDRP-Max 

model): d(j) jd≡ , out(i,j) ijout≡ , in(i,j) ijin≡ , a(i,n,k) inka≡ , x(j,n,k) jnkx≡ . 

 
Sets 

i             set of nodes of graph G 

/1, 2, 3, 4, 5, 6, 7, 8/ 

 

j             set of arcs of graph G 

/1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 

19, 20, 21, 22/ 

 

k      set of objects (paths) 

/1, 2/ 

 

n       set of indirect nodes 

/1, 2/ 

 

Parameters 

d(j)          arcs cost vector; 

 d('1')= 1 ; 

 d('2')= 1; 

 d('3')= 3 ; 
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 d('4')= 3 ; 

 d('5')= 4 ; 

 d('6')= 4 ; 

 d('7')= 2 ; 

 d('8')= 2 ; 

 d('9')= 1 ; 

 d('10')= 1; 

 d('11')= 1 ; 

 d('12')= 1 ; 

 d('13')= 6 ; 

 d('14')= 6 ; 

 d('15')= 4 ; 

 d('16')= 4 ; 

 d('17')= 3 ; 

 d('18')= 3 ; 

 d('19')= 2 ; 

 d('20')= 2; 

 d('21')= 1; 

 d('22')= 1; 

 

Parameters 

out(i,j)   binary crossing matrix of arcs starting in nodes of G; 

*  1 - if the j-th arc starts in the i-th node 

*  0 - otherwise; 

 

out('1','1')= 1 ; 

out('1','3')= 1 ; 

out('2','5')= 1 ; 

out('2','7')= 1 ; 

out('3','2')= 1 ; 

out('3','10')= 1 ; 

out('3','13')= 1 ; 

out('4','9')= 1 ; 

out('4','15')= 1 ; 

out('4','17')= 1 ; 

out('4','19')= 1 ; 

out('4','12')= 1 ; 

out('4','6')= 1 ; 

out('4','4')= 1 ; 

out('5','9')= 1 ; 

out('5','11')= 1 ; 

out('5','21')= 1 ; 

out('6','14')= 1 ; 

out('6','16')= 1 ; 

out('7','18')= 1 ; 

out('8','20')= 1 ; 

out('8','22')= 1 ; 

 

Parameters 

in(i,j)      binary crossing matrix of arcs ending in nodes of G; 

*  1 - if the j-th arc ends in the i-th node 

*  0 - otherwise; 

 

in('1','2')= 1 ; 

in('1','4')= 1 ; 

in('2','6')= 1 ; 
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in('2','8')= 1 ; 

in('3','1')= 1 ; 

in('3','9')= 1 ; 

in('3','14')= 1 ; 

in('4','3')= 1 ; 

in('4','5')= 1 ; 

in('4','11')= 1 ; 

in('4','20')= 1 ; 

in('4','18')= 1 ; 

in('4','16')= 1 ; 

in('4','10')= 1 ; 

in('5','7')= 1 ; 

in('5','12')= 1 ; 

in('5','22')= 1 ; 

in('6','13')= 1 ; 

in('6','15')= 1 ; 

in('7','17')= 1 ; 

in('8','19')= 1 ; 

in('8','21')= 1 ; 

 

Parameters 

a(i,n,k)      source and destination nodes via indirect nodes; 

*a(i,n,k)=1   if the i-th node is the n-th source node for the  

      k-th object, 

*a(i,n,k)=-1  if the i-th node is the n-th destination node for 

     the k-th object, 

*a(i,n,k)=0   otherwise; 

 

a('1','1','1')=1; 

a('7','1','1')=-1; 

a('2','1','2')=1; 

a('8','1','2')=-1; 

 

Variables 

x(j,n,k) 

z; 

 

Positive variable  x, u;  

 

Equations 

cost               maximal paths cost (eq. (3.86)) 

constr1(i,n,k)      eq. (3.79) 

constr2(i)          eq. (3.80) 

constr3(i)          eq. (3.81) 

constr4(k)       eq. (3.87) 

 

cost.. z =e= u; 

constr1 (i,n,k).. sum(j, (out(i,j)-in(i,j))*x(j,n,k))=e=a(i,n,k);   

constr2 (i)..sum((j,n,k), out(i,j)*x(j,n,k))=l=1; 

constr3 (i)..sum((j,n,k), in(i,j)*x(j,n,k))=l=1; 

constr4(k)..sum((j,n), d(j)*x(j,n,k))=l=u;   

 

Model DisjPathsMax /all/; 

 

option limrow=16; 

*number of rows in output file 
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option reslim=10000; 

*10000 seconds for calculations; 

 

option iterlim=100000000; 

* upper bound on iteration numbers 

 

option lp=Cplex; 

* solver Cplex 

 

solve DisjPathsMax using lp minimizing z; 

display x.l, z.l; 

 

Solving this model using the GAMS/CPLEX 12.2 solver we obtain:  
----    156 VARIABLE x.L   

               1           2 

1 .1       1.000 

7 .1                   1.000 

10.1       1.000 

17.1       1.000 

21.1                   1.000 

----    156 VARIABLE z.L                   =        5.000 

It means that for the 1st object we have obtained path (as a sequence of arcs):  

1-10-17 and for the 2nd one: 7-21. Maximal cost of any of K=2 node-disjoint paths is 

equal 5 and is minimal among other K=2 node-disjoint paths in the graph G. 

3.4.3. Description of Algorithms for Solving DP Problems 

3.4.3.1. Subgraphs-generating node-disjoint paths algorithm (SGDP) 

For solving the NDRP-Sum and NDRP-Max problems we propose the 

subgraphs generating-based algorithm (SGDP), (Tarapata, 2001; 

Tarapata & Wroclawski, 2010g). The algorithm searches for a bundle of  

node-disjoint paths for the K objects, each path consists of 2 or more indirect nodes 

(including the source and destination). The idea of the algorithm is to generate 

subgraphs (see Fig. 3.20) in the network of terrain squares (for each moved object 

we generate a separate subgraph) and afterwards, in each of the subgraphs the 

Dijkstra’s shortest path algorithm is run. Each of these subgraphs is created as 

follows. We link nodes: source and destination for the given object (if we have, for 

example, 4 indirect nodes we set the following pairs source-destination: 1-2, 2-3, 3-

4) and afterwards we "mark" the  right and left from the line linking these node 

stripes with a width of 0,5swk, where swk describes the width of the stripe, in which 

the object should move. Nodes of graph ,G GG V A= , which centre coordinates are 

located at this stripe generate the subgraph. It means that the PGk subgraph for the 

k-th object is defined as follows: 

,k Gk GkPG V A=        (3.88) 
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where VGk − set of subgraph nodes for the k-th object, ks  denotes the source node 

for the k-th object, and ( ), ( )x v y v - coordinates of the v-th node; AGk − the set of the 

subgraph’s arcs, ( ) ( ){ }, ' : , 'Gk Gk Gk GA v v V V v v A= ∈ × ∈ .  

 

 

Fig. 3.20. The idea of "cutting" the subgraphs (in the mesh graph) into stripes with a width of swk for 

two moved objects with no indirect nodes 

 

It is possible to exclude some arcs during paths searching by using the 

passability threshold parameter, which is introduced to reject each arc with cost 

greater than the given parameter value. Having the subgraph generated for each 

object we can determine the shortest path for each one in the network based on this 

subgraph using a few searching strategies. Three strategies are being used to 

generate the order of objects, for which we find paths: 

stripeOrderStrategies={Ascending, Descending, Random}. The first two strategies are 

based on order of requests: Ascending − order is the same as in the given paths to 

find; Descending − the order is reversed. In Random the strategy generated order is 

randomized with a uniform distribution. By searching with a nondeterministic 

strategy, Random allows the algorithm to try the subset of K! possible orders, where 

K is the number of objects. The number of examined orders is restricted by stop 

conditions defined in stopStrategiesSets (see further). 
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The pseudo code of the SGDP algorithm is as follows: 

Input data (see chapter 3.4.2.1): K, ,G GG V A= , [ ]ink V M K
a

× ×

=A − matrix of source 

and destination nodes via indirect nodes for each object (generating set of path 

segments PS(k) for the k-th object, number of path segments for each object  

is equal M) 
 

0) Save initial graph G state 

1) WHILE (none of the stop conditions is fulfilled) DO 

2)  Generate stripe order using stripeOrderStrategy; 

3)  IF no unchecked stripe order remains -> THEN EXIT; END IF; 

4a)  IF searching mode equals SameWidth THEN 

5a)  WHILE (none of the stop conditions is fulfilled) DO 

6a)    Generate width of stripes using  

       widthOfStripeGenerationStrategy; 

7a)    IF no unchecked width remains THEN 

    Restore initial graph G state and go to 5a);  

   END IF; 

8a)    FOR each path k among K objects to find DO 

9a)       FOR each segment in PS(k) 

10a)         Search path for segment in G; 

       END FOR; 

11a)      IF path was found THEN 

        save path for k object and remove used nodes and 

arcs         from graph G;  

     END IF; 

    END FOR; 

12a)   IF for all objects paths were found THEN 

     save feasible solution;  

    END IF; 

   END WHILE; 

  END IF;  

4b)  IF searching mode equals VariousWidth THEN 

5b)  WHILE (none of the stop conditions is fulfilled) DO 

6b)    FOR each path k among K objects DO 

7b)     Generate width of stripes for k object using 

       widthOfStripeGenerationStrategy 

8b)     IF no unchecked width remains THEN 

       Restore initial graph G state and go to 5b); 

     END IF; 

9b)     FOR each segment in PS(k) DO 

10b)      Search path for segment in G; 

     END FOR; 

11b)    IF path was found THEN 

       save path for k object and remove used nodes and arcs 

         from graph G 

 ELSE restore initial graph G state 

 END IF; 

    END FOR; 

12b)   IF for all objects have found paths  

     save feasible solution and restore initial graph G state 

    END IF; 

   END WHILE; 

  END IF; 

  END WHILE; 
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There are two modes of path searching: SameWidth − all stripes must have the 

same width, VariousWidth − each stripe may have a different width. 

Two different strategies for generating the width of stripes are implemented: 

 widthOfStripeGenerationStrategy={Constant, Random},  

where Constant − width of the stripe is given and never changed; Random – width 

of thee stripe is randomized with a uniform distribution. Random strategy 

implementation generates a new width for the stripe with respect to the previous 

generated width, so that only greater values are allowed. Minimal width 

increasing is 0.5 unit (one unit = distance between two neighbouring nodes 

(squares)). 

Additionally, we used four different stop strategies, which could be used in 

any combination: 

stopStrategies={MaxIterationsNumber, MaxFeasibleSolutionsFound,  

     NextSolutionIsBetter, TimeLimit}. 

In the MaxIterationNumber strategy the algorithm ends when the maximum 

iteration number is reached, where a single iteration is the one searched for with  

a fixed order and a width of the stripes. With the MaxFeasibleSolutionsFound 

strategy the algorithm ends, when a specific number of the feasible (acceptable) 

solutions is found; NextSolutionIsBetter stop strategy ends, when the next feasible 

solution is no better than the previous one, plus there is a specific epsilon value. 

The last strategy, TimeLimit, stops the algorithm when the execution time reaches 

the specified time limit. 

We can save the found paths during previous iterations or not for the objects 

(PathMemory={true, false}): if the next iteration uses the same stripe width as for the 

previously found path we can use it to decrease computational time of the 

iteration. 

Let us analyse the computation complexity of the SGDP algorithm. 

Generating K subgraphs for each source-destination pairs in each path segment is 

an operation, which complexity is O(MKV). Determining the shortest path in each 

subgraph has a complexity of O(A logV) using the Dijkstra’s algorithm with binary 

heaps; since we do it MK times (M path segments for each of K objects) we have 

O(MKAlogV). The number of possible combinations of paths determining the 

order is equal to the number of permutation among K elements, that is K!. If we 

check it for each possible action stripe width (let the number of the possible action 

stripe width for each object be equal Q) then it can be done, in the worst case, QKK! 

times. Since the complexity of the SGDP algorithm is O(QKK!MKA logV). The 

estimation of O(QKK!MKA logV) of the SGDP complexity is only theoretical (when 

all stop conditions: MaxIterationsNumber, MaxFeasibleSolutionsFound, 

NextSolutionIsBetter, TimeLimit would have maximum values). In practice, time 

complexity of the SGDP is estimated by the function O(WMKA logV), where 



3. Models and Algorithms for Movement Planning 

 

100 

W=MaxIterationsNumber and we never take into account all QKK! possibilities of 

determining paths, because of using techniques to avoid checking all of them: 

randomization, different stop conditions, saving paths found earlier, etc. 

Experimental results show that in an average case the SGDP runs in polynomial 

time (see Fig. 3.24, Table 3.11: minCT_ SGDP, maxCT_ SGDP, avgCT_ SGDP). 

Let us notice that the considered algorithm superbly fits the parallel 

computations by using, for example, K processors (each of the processors generates 

a subgraph and determines the shortest path in this subgraph). In such a case we 

accelerate computations about K times. 

3.4.3.2. Minimal cost flow problem-based algorithms 

In the paper (Tarapata, 2008e) it has been shown how to use modifications of 

the Busacker-Gowen minimal-cost flow algorithm (Busacker & Gowen, 1961) to 

solve the node-disjoint case of the problems: DP2.1, DP2.2, DP2.3, DP2.4 in some 

military applications. 

The problem of finding an acceptable solution of K node-disjoint paths in the 

, ,G GS G V A c= =  network (see Fig. 3.21a) from Ks to Kt subset of nodes is based 

on the S* temporary network (see Fig. 3.21b) and the maximal flow algorithm. We 

use the well-known conclusion from the Ford-Fulkerson theorem concerning 

maximal flow in network S from s (source) to t (target) (Wilson, 1998, pp.172): "If 

the capacity value of each arc in the network S is an integer, then the capacity cij of the arc 

(i,j) describes the number of arcs linking i and j. The value of the maximal flow in such  

a network describes the number of all arc-disjoint paths from s to t". Since we would like 

to find node-disjoint paths (instead of arc-disjoint) we must modify the S network 

to S*. The temporary network S* is constructed as follows:  

* * ,S G c=         (3.90) 

where * * *,G V A= , { }

* ' " ,V V V s t= ∪ ∪ , * *:c V V N× →  − capacity function, 

cij=c(i,j) − capacity function value for arc (i,j). Graph G* is constructed as follows: 

each node v of graph G is replaced by two nodes (see Fig. 3.21b): v' (belonging to 

V' set) and v" (belonging to V" set), next we link v' and v" by an arc and set 

capacity of this arc equal to 1. All of the arcs, which end in the v node in graph G 

will end in v' node in graph G*, all of the arcs which start in the v node in G will 

start from v" in G*. Each of these arcs in G* will have the same capacity as in G. 

Moreover, two nodes (s and t) are added to the set of nodes in G*: we link node s 

with each of the nodes belonging to the Ks set and each of the nodes belonging to 

Kt with node t. Each of these arcs has the capacity value set to 1. 

The problem of finding the K node-disjoint paths in network S* is based on 

the maximal flow problem definition. Flow f in network S* is a function, which set 

for each arc (i,j) in S* such a nonnegative value fij that: 
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1. for each arc (i,j) in S* the following formula is fulfilled: 

0 ij ijf c≤ ≤         (3.91) 

2. for source node s in S* the following formula is fulfilled: 

* *
∈ ∈

− =∑ ∑si is

i V i V

f f FV        (3.92) 

Value FV is called the flow value. 

3. for target node t in S* the following formula is fulfilled: 

 
* *

ti it

i V i V

f f FV
∈ ∈

− = −∑ ∑        (3.93) 

4. for each node * /{ , }j V s t∈ : 

* *

0ji ij

i V i V

f f
∈ ∈

− =∑ ∑        (3.94) 

Maximal flow problem is defined as follows: for a given S*, s, t to find [fij]* 

which satisfy (3.91)-(3.94) and   

*

( , )
([ ] ) max  ([ ])

ij

ij ij
f SF s t

FV f FV f
 ∈ 

=      (3.95) 

where SF(s,t) – set of all possible flows in S* from s to t. 

 

 
(a)       (b) 

Fig. 3.21. (a) Network S with values of arc capacity cij; (b) Network S* related to S with flow values 

[fij]* after realization of two iterations of maximal flow algorithm (FV=2), Ks={1,2, 3}, Kt={6,7} 

 

 If, after solving the problem, F([fij]*)<K then in S* (and in consequence in S)  K 

node-disjoint paths from Ks to Kt does not exist. Otherwise, K node-disjoint paths 

from Ks to Kt exist and we can read them after the last step of the maximal flow 
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algorithm as follows: we K times start from s and choice arcs (i,j) with fij=1 till we 

achieve t. These alternate sequences of nodes and arcs indicate the k-th disjoint 

path from s to t. For example, in Fig. 3.21b we have FV=K=2 disjoint paths (as the 

sequence of nodes) from Ks={1,2,3} to Kt={6,7}: (1st) 1'-1"-4'-4"-6'-6"; (2nd) 2'-2"-5'-5"-

7'-7". 

To find the K node-disjoint shortest paths (with minimal total cost of all K 

paths) we modify the S* network as follows: 

{ }

** * , ,S G q c=        (3.96) 

where * *:q V V R+

× →  − time cost function, qij=q(i,j) − value of the function for arc 

(i,j).  

Formulation of the K node-disjoint shortest paths problem in the S* network from s 

to t defined as minimal cost flow problem with demanded flow equal K is as 

follows: 

( , ) *

minij ij
i j A

q f
∈

→∑       (3.97) 

with constraints: (3.91), (3.92) where we replace FV=K, (3.93) where we 

replace FV=K, (3.94). 

Method for solving this problem is based on the Busacker-Gowen algorithm 

(Busacker & Gowen, 1961) with a complexity of O(V4), where V is the number of 

nodes in G* and presented in details in (Tarapata, 2008e). 

 

 
(a)       (b) 

Fig. 3.22. (a) Network S with values of qij and cij; (b) Network S** related to S prepared for finding 

FV=K=2 node-disjoint shortest paths, Ks={1, 2, 3}, Kt={6, 7} 

 



Z. Tarapata − Models and Algorithms for Knowledge

 

Let us note that the above

problem when Ks and K

between K pairs of specified nodes). This method only allows finding 

paths between any of the nodes belonging to 

solving node-disjoint case problems: 

In the paper (Tarapata

modifications of the Edmonds

the NDRP-Sum and NDRP

A specific method for constructing the temporary network being used in the 

modified Edmonds-Karp algorithm in order to find the 

visiting specified nodes has been proposed.

3.4.4. Experimental Analysis of the A

We have conducted computations for real terrain areas 

with different number of nodes: 5

(Fig. 3.23b) and 35 000. We have used random pairs of source

(single segments only (M

research for almost every possible combination of 

defined in chapter 3.4.3.1

 

(a) 

Fig. 3.23.  Typical mesh graphs representing a fragment of the terrain. Colour represents cost of 

nodes: the light colour of the nodes (square) describes open (well passable) terrain, the dark colour 

describes obstacles (forests, lakes, rivers, buildings), the lighter

(a) Graph with 7 540=65×116 nodes representing terrain near Drawsko (Poland). 

(b) Graph with 25 000=125×200 nodes representing terrain near Radom (Poland) with two 

node-disjoint paths found by the 

 

The following 

MaxIterationNumber}, {TimeLimit

{TimeLimit, MaxIterationNumberStrategy

− Models and Algorithms for Knowledge-Based Decision Support and Simulation..

us note that the above-presented method does not guarantee solving the 

Kt are vectors (and we must find the K node

pairs of specified nodes). This method only allows finding 

paths between any of the nodes belonging to Ks and Kt , so it can be used for 

disjoint case problems: DP2.1, DP2.2, DP2.3, DP2.4. 

er (Tarapata & Wroclawski, 2011d) it has been shown how to use 

modifications of the Edmonds-Karp (Edmonds & Karp, 1972) algorithm to solve 

NDRP-Max problems (modifications of the 

A specific method for constructing the temporary network being used in the 

Karp algorithm in order to find the K node

visiting specified nodes has been proposed. 

Experimental Analysis of the Algorithms 

We have conducted computations for real terrain areas used in 

with different number of nodes: 5 000, 7 540 (Fig. 3.23a), 10 000, 20

. We have used random pairs of source-

M=1)) for K objects (K∈{2, 3, 4, 5, 6}). We have performed 

research for almost every possible combination of the SGDP algorithm 

3.4.3.1 for the NDRP-Sum problem. 

(b) 

Typical mesh graphs representing a fragment of the terrain. Colour represents cost of 

nodes: the light colour of the nodes (square) describes open (well passable) terrain, the dark colour 

describes obstacles (forests, lakes, rivers, buildings), the lighter the colour the smaller the cost value. 

540=65×116 nodes representing terrain near Drawsko (Poland). 

000=125×200 nodes representing terrain near Radom (Poland) with two 

disjoint paths found by the SGDP algorithm (lighter colour)

The following stopStrategiesSets have been used: {{

TimeLimit, MaxIterationNumber, NextSolutionIsBetter

MaxIterationNumberStrategy, NFeasibleSolutionsFound

and Simulation... 103 

presented method does not guarantee solving the 

node-disjoint paths 

pairs of specified nodes). This method only allows finding K disjoint 

, so it can be used for 

 

) it has been shown how to use 

Karp, 1972) algorithm to solve 

problems (modifications of the DP2.5 problem).  

A specific method for constructing the temporary network being used in the 

node-disoint paths 

used in Zlocien system 

000, 20 500, 25 000 

-destination nodes 

{2, 3, 4, 5, 6}). We have performed 

algorithm parameters 

 

Typical mesh graphs representing a fragment of the terrain. Colour represents cost of 

nodes: the light colour of the nodes (square) describes open (well passable) terrain, the dark colour 

the colour the smaller the cost value.  

540=65×116 nodes representing terrain near Drawsko (Poland).  

000=125×200 nodes representing terrain near Radom (Poland) with two  

lighter colour) 

have been used: {{TimeLimit, 

NextSolutionIsBetter},  

NFeasibleSolutionsFound}}  
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with the following values: MaxIterationNumber=10, NFeasibleSolutionsFound=4, in 

NextSolutionIsBetter we set the minimum decrement of cost to 5.0, in TimeLimit 

strategy we have restricted the execution time of each iteration to 5 000ms. 

All computations have been done using a computer with Intel Core 2 Duo 2.2 

GHz processor and 3GB RAM. 
 

 

 

Fig. 3.24. Average computation time (milliseconds, logarithmic scale) of the SGDP algorithm in 

relation to stripeOrderStrategy, widthOfStripeGenerationStrategy and PathsMemory 

 

In Fig. 3.24 we present the average computation time of the SGDP algorithm 

in relation to stripeOrderStrategy, widthOfStripeGenerationStrategy and PathsMemory 

for different number of nodes. From Fig. 3.24 results that in an average case the 

complexity of the SGDP algorithm is time-polynomial and it is much better than 

the theoretical estimation given in chapter 3.4.3.1. It results from using some 

techniques (described in chapter 3.4.3.1) to decrease this complexity, such as: 

randomization, different stop conditions, saving paths found earlier, etc. It is 

easy to notice that we have obtained the shortest computation times for 

stripeOrderStrategy∈{Ascending, Descending} and widthOfStripeGenerationStrategy 

=Constant. Moreover, we can notice that for each pair stripeOrderStrategy-

widthOfStripeGenerationStrategy computation time for PathsMemory=true is 

significantly shorter than for PathsMemory=false (from about 3 to 10 times). It 

results from the fact that we have saved paths found during previous 

iterations for objects and if the next iteration uses the same stripe width as for 

the previously found path, we will use these paths to decrease the computational 

time of the iteration. 

Analysis of results in Fig. 3.25 supplements the results presented above for 

different values of stopStrategy. We obtained the shortest computation time for the 

set of stop strategies {TimeLimit, MaxIterationNumber, NextSolutionIsBetter}. 
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In Fig. 3.26 we presented the average computation time (milliseconds, 

logarithmic scale) of the SGDP algorithm in relation to the number of graph nodes 

(V) and number of objects (K). 

 

 

Fig. 3.25. Average computation time (milliseconds, logarithmic scale) of the SGDP algorithm in 

relation to stopStrategy and PathsMemory 

 

 

Fig. 3.26. Average computation time (milliseconds, logarithmic scale) of the SGDP algorithm in 

relation to the number of graphs nodes (V) and number of objects (K) 

 

In Fig. 3.27 we presented the average accuracy coefficient avgAC of the SGDP 

algorithm (AC=value of the objective function obtained from the SGDP 

algorithm/optimal value of the objective function) in relation to: 

stripeOrderStrategy, widthOfStripeGenerationStrategy and PathsMemory  

(an accurate (optimal) solution of the problem (3.78)-(3.84) obtained using the the 

GAMS/CPLEX 12.2 solver). The value of avgAC fluctuates from ~1.02 to ~1.6. It 

means that the value of the objective function (sum of the cost of the K paths) 

obtained from the SGDP algorithm was worse from ~2% to ~60% in relation to the 
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optimal solution (see also  Table 3.11). The SGDP algorithm gives the best values of 

the avgAC for PathsMemory=true, stripeOrderStrategy=Random, and 

widthOfStripeGenerationStrategy=Constant. 

 

 

Fig. 3.27. Average accuracy coefficient (avgAC) of the SGDP algorithm in relation to 

stripeOrderStrategy, widthOfStripeGenerationStrategy and PathsMemory (accurate solution obtained 

using the GAMS/CPLEX 12.2 solver) 

 

Table 3.11. Comparison of the computation time and accuracy of the SGDP algorithm with 

characteristics of the optimal solution obtained by solving problem (3.78)-(3.84) using the 

GAMS/CPLEX 12.2 solver for K=2 

V 5 000 7 540 10 000 20 500 25 000 35 000 

minOF_SGDP 162 1 247 355 203 2 729 23 775 

maxOF_SGDP 191 1 464 362 208 3 334 25 488 

avgOF_SGDP 167 1 333 356 204 2 950 24 364 

OOF 158 956 353 190 1 955 21 038 

minAC 2.2% 30.4% 0.7% 6.7% 39.6% 13.0% 

maxAC 20.4% 53.1% 2.5% 8.9% 70.5% 21.2% 

avgAC 5.5% 39.4% 1.0% 7.3% 50.9% 15.8% 

minCT_SGDP 10 31 15 140 109 250 

maxCT_SGDP 156 375 282 1 375 1 250 3 079 

avgCT_SGDP 98.2 224.4 180.2 852.4 789.2 1 786.7 

CT_CPLEX 5 200 8 910 10 690 73 140 26 030 114 410 

minCTAC 33 24 38 53 21 37 

maxCTAC 520 287 713 522 239 458 

avgCTAC 52.9 39.7 59.3 85.8 33.0 64.0 

 

In Table 3.11 we presented a comparison of the computation time and 

accuracy of the SGDP algorithm with characteristics of the optimal solution 

obtained by the solving problem (3.78)-(3.84) using the GAMS/CPLEX 12.2 solver 
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for K=2. We used the following notations: OOF – optimal value of objective 

function (3.78); minOF_SGDP, maxOF_SGDP, avgOF_SGDP – minimal, maximal 

and average values of the objective function, respectively, obtained from the SGDP 

algorithm; AC – percentage approximation coefficient of the SGDP 

algorithm=(value of the objective function from the SGDP algorithm/optimal 

value of the objective function) in percents-100%; minAC, maxAC, avgAC – 

minimal, maximal and average values of AC; minCT_SGDP, maxCT_SGDP, 

avgCT_SGDP – minimal, maximal and average values of the computation time (in 

msec) using the SGDP algorithm; CT_CPLEX – computation time (in msec) for 

finding the optimal solution using the GAMS/CPLEX 12.2 solver; minCTAC, 

maxCTAC, avgCTAC – computation time acceleration coefficient CTAC values 

(respectively: minimal, maximal, average), CTAC=computation time using the 

GAMS/CPLEX solver/computation time using the SGDP algorithm. Values of 

minAC, maxAC and avgAC indicate that the value of the objective function (sum of 

the cost of the K paths) obtained from the SGDP algorithm was worse from ~1% to 

~50% (average) in relation to the optimal solution, but the computation time for the 

SGDP algorithm was shorter from ~30 to ~85 times in relation to the 

GAMS/CPLEX solver (in selected cases even >700 times faster, 

maxCTAC(10000)=713). It is possible to increase the accuracy of the algorithm by 

changing its input parameters (in parenthesis we give the values, which have 

been used during experiments): MaxIterationNumber (10), 

NFeasibleSolutionsFound (4), NextSolutionIsBetter (5.0), TimeLimit (5000ms). 

Additional experiments have shown that by increasing, for example 

MaxIterationNumber or TimeLimit, we can increase the accuracy of the algorithm, 

but at the cost of time. Parameter values, which have been used during 

experiments described in this chapter made some compromise between accuracy 

and time-complexity of the SGDP algorithm. 

3.5. Summary 

As it has been written in chapter 3.1, all presented methods have applications 

in many transportation problems, especially ones related to paths planning. The 

approach presented in chapter 3.2 is dedicated especially for multiresolution path 

planning in grid graph-based route planning when the grid represents, for 

example a terrain environment as a regular grid of terrain squares. It can be shown 

that a multiresolution approach for path planning represented by finding shortest 

paths in recurrently defined G* can also be used for multistage path planning: we 

can first find a "rough" path in a "rough" terrain represented by G* (for example in 

Fig. 3.11) and then we can find an accurate path in a more detailed environment. 

However, the DSP algorithm gives a good result not only for the all-pairs shortest 

paths problem (Table 3.4). Since the most complex steps of the algorithm (steps 1-3, 
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"bottleneck") are done only one time (the b-graph is built only one time – initial 

preprocessing), then if we compute a one-pair shortest path many times it allows 

us to shorten the time of the "bottleneck". It is also possible to set a compromise 

between space and time complexity of the DSP algorithm.  

However, any algorithm solving the multiobjective shortest path problem  

is, at least, exponential in the worst case analysis but we can use specific, effective 

approaches for the special MOSP problems. In chapter 3.3 we focused on analysis  

of complexity of selected MOSP problems and showed how we can use 

modifications and advantage of fast implementations of the Dijkstra’s algorithm in 

order to effectively and optimally solve them. Experimental results of the 

computational time for the presented approach (especially the modified Dijkstra’s 

algorithm) in chapter 3.3.5 confirm their good effectiveness for solving selected 

MOSP problems. Models and methods described in the chapter were selected from 

numerous approaches. Such problems as: determining disjoint paths (Li et al., 1992, 

Schrijver & Seymour, 1992; Tarapata, 1999a; 2000e), stochastic network 

dependencies (Sigal et al., 1980; Korzan, 1982; 1983a; 1983b; Loui, 1983),  

time-dependencies in the network (Bernstein & Kelly, 1997; Cai et al., 1997; Djidjev 

et al., 1995; Sherali et al., 1998) in multicriteria context were only indicated here.  

Algorithms presented in chapter 3.4 (SGDP and modifications of minimal 

cost flow algorithms) for solving the node-disjoint shortest K paths problem in 

mesh graphs can be used for transportation, e.g. maneuver planning of military 

detachments (Tarapata, 2009a). For one of them (SGDP) it has been shown that it is 

fast (in comparison with the GAMS/CPLEX solver) and gives a satisfying solution 

to the problem (experimental average approximation coefficient of the algorithm is 

equal from 1% to 50%). Since the algorithm is approximated it seems to be essential 

to provide necessary and sufficient conditions for obtaining optimal solutions and 

estimate the theoretical approximation coefficient. Moreover, it seems to be 

essential to examine sensitivity of the algorithm changing number of indirect 

nodes in paths for each object and values of the parameters: 

MaxFeasibleSolutionsFound, NextSolutionIsBetter, NFeasibleSolutionsFound. It is 

possible to extend the considered problem using more criteria (e.g. minimization of 

maximal path cost for any object) and obtaining the multicriteria disjoint shortest 

paths problem. 

Majority of the presented methods have been used in practice. Many very 

interesting models for paths planning (alternative paths, simplest path,  

time-dependent paths) have not been presented here due to limitation reasons and 

can be found in other papers of the author (Tarapata, 2004b; 2006c; Tarapata et al., 

2009b; 2009d; Tarapata & Mierzejewski, 2010f). However, some of these 

applications are presented in chapter 6.  
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Appendix 3.A.1. Proof of Theorem 3.1 

The proof consists of three parts:  in the first one we consider a case when 

G*=G, in the second one we prove that min * min * min * *( ( , )) ( ( , ))s tL d s t L d x x≥  and the third 

one contains proof that min * max *max * * * *
1( ( , )) ( ( , )) '( , ( , ))s t sL d s t L d x x L s W x x≤ + . 

Part 1 

If V*=V then G*=G and each x*=x. Moreover, for each * * *, Gx y V∈ occurs: 

* *( , ) { }W x y x= , hence for each * * *, Gz y V∈  the following formulas are true:         

  
( ) ( )

min min

*min * *
*

( , ) , ( , ) ,
( , ) min ( ( , )) min ( ( , )) 0 ( , )z

d D x x d D x y
c x y L d L d c x y

⋅ ⋅ ∈ ⋅ ⋅ ∈

= ⋅ ⋅ + ⋅ ⋅ = + ,   

             
( ) ( )

min min

*max * *
*

( , ) , ( , ) ,
( , ) max ( ( , )) max ( ( , )) 0 ( , )z

d D x x d D x y
c x y L d L d c x y

⋅ ⋅ ∈ ⋅ ⋅ ∈

= ⋅ ⋅ + ⋅ ⋅ = +  

because of ( )

min , { }D x x x=  and ( )

min min, { ( , )} {( , )}D x y d x y x y= =  represents arc 

from x to y, hence min( ( , )) ( , )L d x y c x y= . In such case min *min *min * *( ( , )) ( ( , ))s tL d s t L d x x=

= *max *max * *( ( , ))s tL d x x  and formula (3.7) is fulfilled.  

Part 2 

Now, Let G* be a graph with n<V (n − count of nodes in G*) nodes. Let us take 

into account the shortest path min
0 1 2 ( ( , ))( , ) ( , , ,..., )l d s td s t x s x x x t= = =  in G from s to t. 

Each path ( , )d s t  in G "generates" path * * *( , )s td x x  in G* such, that 

* *

*

{0,..., ( ( , ))} {0,..., *( *( , ))}s t
i j

i l d s t j l d x x
x x

∈ ∈

∀ ∃ ∈  and  * *

* * * * * * * * *
0 1 2 *( *( , ))

( , ) ( , , , ..., )
s t

s t s tl d x x
d x x x x x x x x= = = . Let 

us determine for each * * * * *,  0,..., ( ( , ))i s tx i l d x x=  set * *( ) { ( , ) : }i iT x x d s t x x= ∈ ∈ . For 

example, for graph G* in Fig. 3.2 we have:  
min( 9, 8) (9,10,12, 3, 5,7,8)d s t= = = , * * * * * *

0 1 2( , ) ( , , )s td x x x E x A x B= = = =  and 

*
0( ) {9,10,12}T x = , *

1( ) {3}T x = , *
2( ) {5,7,8}T x = . Let us consider any two 

neighbouring b-nodes * * * * *
1, ( , )i i s tx x d x x

+

∈ , i>0. Let us order nodes belonging to 

*( )iT x  and *
1( )iT x

+

 topologically ( ( )T i  describes cardinality of the set ( )T i ). We 

obtain for *( )iT x  and *
1( )iT x

+

 topologically ordered sequences of nodes: 

*

* * *
,1 ,2 ,| ( )|

, , ...,
i

i i i T x
x x x  and *

1

* * *
1,1 1,2 1,| ( )|

, , ...,
i

i i i T x
x x x

+

+ +
+

. Let us take the first 
*
,1ix  and the last 

*

*

,| ( )|ii T x
x  nodes from *( )iT x  and the first node 

*
1,1ix

+

 from *
1( )iT x

+

. It is easy to observe 

that: 

   * * *
,1 1( , )i i ix W x x

−

∈ ,   *

* * *
1,| ( )|

( , )
i

i ii T x
x W x x

+

∈  ,  
* * *

1,1 1( , )i i ix W x x
+ +

∈   (3.A.1) 

For example (see Fig. 3.2), for *
1( )iT x

=

=>
*
1,1 3x = , for *

1 2( )iT x
+ =

=>

* * *
2,1 2,2 2,35,  7, 8x x x= = =  and next * * *

1,1 1 03 ( , ) {1,3}x W x x= ∈ = , * * *
2,1 2 15 ( , ) {5,6}x W x x= ∈ = , 

*

* * * *
1,1 1 21,| ( )|

3 ( , ) {3, 4}
iT x

x x W x x= = ∈ = . 
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We will show that min * * *min *min * *
,1 1,1 1( ( , )) ( ( , ))i i i iL d x x L d x x

+ +

≥ .  

Let us observe that * *

min * * min * * min * *
,1 1,1 ,1 1,1,| ( )| ,| ( )|

( , ) ( , ) ( , )
i i

i i i ii T x i T x
d x x d x x d x x

+ +

=  where 

symbol "||" denotes the concatenation of two paths, hence   

* *

min * * min * * min * *
,1 1,1 ,1 1,1,| ( )| ,| ( )|

( ( , )) ( ( , )) ( ( , ))
i i

i i i ii T x i T x
L d x x L d x x L d x x

+ +

= +

  (3.A.2) 

Next, let us note that from (3.5) results: *
1

* min * min * * min * *
1 1( ( , )) ( , )

i
i i i ix

L d x x c x x
−

+ +

=

 
for 

i>0  because * *
1,  i ix x

+

 are adjacent in G* , and the length of the path from 
*
ix  to 

*
1ix

+

 

equals the length of the arc between these nodes, that is *

min * *
1( )

( , )
i

i ip x
c x x

+

 and *
( )

i
p x  

equals like in (3.5). From (3.2) we have:  

  

( )

( )

*
min * * * *1

1 1

min * * * *
1 1

min * *
1

( , ) ( , ), ( , )

( , ) ( , ), ( , )

( , ) min ( ( , ))

                        + min ( ( , ))

i
i i i i

i i i i

i ix d D W x x W x x

d D W x x W x x

c x x L d

L d

−

− +

+ +

+

⋅ ⋅ ∈

⋅ ⋅ ∈

= ⋅ ⋅ +

⋅ ⋅

    (3.A.3) 

Let us consider the first elements of sums in (3.A.2) and (3.A.3).  It is easy to 

observe that 

( )

*
min * * * *

1 1

min * *
,1 ,| ( )|( , ) ( , ), ( , )

min ( ( , )) ( ( , ))
i

i i i i

i i T xd D W x x W x x
L d L d x x

− +
⋅ ⋅ ∈

⋅ ⋅ ≤

   (3.A.4) 

because of (3.A.1) we obtain: ( )*

min * * min * * * *
,1 1 1,| ( )|

( , ) ( , ), ( , )
i

i i i i ii T x
d x x D W x x W x x

− +

∈  and the 

inequality (3.A.4) is clear. Let us consider the second elements of sums in (3.A.2) 

and (3.A.3). By analogy we obtain: 

( )

*
min * * * *

1 1

min * *
1,1,| ( )|( , ) ( , ), ( , )

min ( ( , )) ( ( , ))
i

i i i i

ii T xd D W x x W x x
L d L d x x

+ +

+

⋅ ⋅ ∈

⋅ ⋅ ≤

   (3.A.5) 

Taking into account (3.A.1) we have: 

( )*

min * * min * * * *
1,1 1 1,| ( )|

( , ) ( , ), ( , )
i

i i i i ii T x
d x x D W x x W x x

+ + +

∈

     

and inequality (3.A.5) is clear. From (3.A.4) and (3.A.5) results  

*
1

min * * * min * min * * min * *
,1 1,1 1 1( ( , )) ( ( , )) ( , )

i
i i i i i ix

L d x x L d x x c x x
−

+ + +

≥ =

    

for each i>0. For i=0 we have to examine condition:
min * * * min * min * *

0,1 1,1 0 1( ( , )) ( ( , ))L d x x L d x x≥ . We can then again write: 

* *
0 0

min * * min * * min * *
0,1 1,1 0,1 1,10,| ( )| 0,| ( )|

( , ) ( , )|| ( , )
T x T x

d x x d x x d x x=

    

  
* *
0 0

min * * min * * min * *
0,1 1,1 0,1 1,10,| ( )| 0,| ( )|

( ( , )) ( ( , )) ( ( , ))
T x T x

L d x x L d x x L d x x= +

   

Next, from (3.5) results that  
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( )

*
min * * * *1

0 1 1 0

* min * min * * min * *
0 1 0 1

( , ) ( , ), ( , )
( ( , )) ( , ) min ( ( , ))

x d D W x x W x x
L d x x c x x L d

⋅ ⋅ ∈

= = ⋅ ⋅

,   

 hence  
( )

*
min * * * *0

0 1 1 0

min * *
1,10 ,| ( )| ( , ) ( , ), ( , )

( ( , )) min ( ( , ))
T x d D W x x W x x

L d x x L d
⋅ ⋅ ∈

≥ ⋅ ⋅ .  

We have shown that condition min * * *min *min * *
,1 1,1 1( ( , )) ( ( , ))i i i iL d x x L d x x

+ +

≥  is 

fulfilled for each * * * *0,..., ( ( , )) 1s ti l d x x= − , hence min * min * min * *( ( , )) ( ( , ))s tL d s t L d x x≥  

from (3.7) is fulfilled. 

Part 3 

To prove that min *max *max * *( ( , )) ( ( , ))s tL d s t L d x x≤  we will first show that 

min * * *max *max * *
,1 1,1 1( ( , )) ( ( , ))i i i iL d x x L d x x

+ +

≤ , * * * *1,..., ( ( , )) 1s ti l d x x= − , by analogy to part 2. 

From (3.A.2), (3.5) and (3.6) results: *
1

* max * max * * max * *
1 1( ( , )) ( , )

i
i i i ix

L d x x c x x
−

+ +

=  and from (3.3) 

( )

( )

*
min * * * *1

1 1

min * * * *
1 1

max * *
1

( , ) ( , ), ( , )

( , ) ( , ), ( , )

( , ) max ( ( , ))

                     + max ( ( , ))

i
i i i i

i i i i

i ix d D W x x W x x

d D W x x W x x

c x x L d

L d

−

− +

+ +

+

⋅ ⋅ ∈

⋅ ⋅ ∈

= ⋅ ⋅ +

⋅ ⋅

   (3.A.6) 

It is easy to notice, by analogy to (3.A.4) and (3.A.5), that the first element of 

the sum from (3.A.6) is greater than the first element of the sum from (3.A.2) and 

the second element of the sum from (3.A.6) is greater than the second element of 

the sum from (3.A.2), hence min * * * max * max * *
,1 1,1 1( ( , )) ( ( , ))i i i iL d x x L d x x

+ +

≤ , 

* * * *1,..., ( ( , )) 1s ti l d x x= − . For i=0 we have to examine condition:  

min * * *max * max * * * *
0,1 1,1 0 1 0 1( ( , )) ( ( , )) '( , ( , ))L d x x L d x x L s W x x≤ +

    

But  * *
0 0

min * * min * * min * *
0,1 1,1 0,1 1,10,| ( )| 0,| ( )|

( , ) ( , )|| ( , )
T x T x

d x x d x x d x x=  and 

* *
0 0

min * * min * * min * *
0,1 1,1 0,1 1,10,| ( )| 0,| ( )|

( ( , )) ( ( , )) ( ( , ))
T x T x

L d x x L d x x L d x x= +

   

Next, from (3.3) and (3.5) results that *
1

* max *max * * max * *
0 1 0 1( ( , )) ( , )

x
L d x x c x x= =

( )
min * * * *

0 1 1 0( , ) ( , ), ( , )
max ( ( , ))

d D W x x W x x
L d

⋅ ⋅ ∈

⋅ ⋅ . Since * *
0 1'( , ( , ))L s W x x  is the length of the longest of the 

shortest paths from 
*
0,1s x=  to any node from * *

0 1( , )W x x  hence 

*
0

* * min * *
0 1 0,1 0,| ( )|

'( , ( , )) ( ( , ))
T x

L s W x x L d x x≥ . By analogy, 

( )

*
min * * * * 0

0 1 1 0

min * *
1,10,| ( )|( , ) ( , ), ( , )

max ( ( , )) ( ( , ))
T xd D W x x W x x

L d L d x x
⋅ ⋅ ∈

⋅ ⋅ ≥

    

Thus, we have shown that condition: 

min *max *max * * * *
1( ( , )) ( ( , )) '( , ( , ))s t sL d s t L d x x L s W x x≤ +      

is fulfilled. 

 Q.E.D.          ♦ 



4. Models and Algorithms for Movement Synchronization 

4.1. Introduction 

Scheduling movement of objects is an essential element of numerous systems: 

for routing in computer networks (Cidon et al., 1997; 1999; Kerbache & Smith, 2000; 

Silva & Craveirinha, 2004; Tarapata, 2006a), for movement planning of mobile 

robots (Buchli, 2006; Jing, 2008; Ozaki et al., 1993), for tasks processed inside 

distributed or parallel computing systems (Leung, 2004; Tarapata, 1999a; 2000e), 

for redeployment of military detachments (Logan, 1997a; Rajput & Karr, 1994; 

Tarapata, 1999b; 2000b; 2000f; 2001; 2003a; 2004b; 2004c; 2005a; 2005b; 2007a; 2007e; 

2008a; 2008b; 2008c; 2008d; 2009a; 2010b, 2011b), in crowd planning and simulation 

(Klupfel et al., 2005; Najgebauer et al., 2009) or in computer games (Van der Akker 

et al., 2010), etc. The movement synchronization scheduling (MSS) problem deals 

with planning of movement for many objects to synchronize their movement. This 

problem most often consists of two subproblems: (MSS1) paths planning for many 

objects; (MSS2) movement organization by determining synchronization 

checkpoints and times on the paths. The MSS1 problem has been analysed in detail 

in chapter 3. The MSS2, e.g. in military applications, results from the fact that 

objects (tanks, trucks, aircrafts, units, convoys) are moved according to a group 

pattern. From the point of view of mission realization, preservation of group 

pattern during military actions is very important: each object being moved in  

a group (e.g. during attack, during redeployment) must keep specific distances 

between each other inside the group (Logan, 1997a; Tarapata, 2011a) or must 

achieve specific checkpoints in given times (Tarapata, 2009a). Taking into account 

military applications (e.g. battlefield simulation systems, military logistics 

systems), movement synchronization scheduling has an influence on accuracy, 

adequacy, effectiveness and other characteristics of such systems. Afterwards, the 

problem is to model and optimize such movements of detachments to achieve 

intended goals of commands (such as: achievement of destinations on restricted 

time, avoiding losses during redeployment etc.). A special type of system with this 

requirement is the Allied Deployment and Movement System (ADAMS) 

(Heal & Garnett, 2001), which has been developed in support of multinational 

force movement planning in NATO. The ADAMS provides the users with the tools 

to plan and manage deployment operations. The other example of using such 

requirements are modules for movement planning and simulation of military 

objects (units) in combat simulators (Ceranowicz, 1994; Campbell et al., 1995, 
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Logan, 1997a; Henninger et al., 2000; Longtin & Megherbi, 1995; Najgebauer et al., 

2007b; Rajput & Karr, 1994, Reece et al., 2000; Tarapata, 2000c; 2010b). 

This chapter is organized as follows. In chapter 4.2 selected scheduling 

models and algorithms for synchronous movement are described. Some properties 

of these algorithms are proved. Experimental analysis of the algorithms has been 

given. In chapter 4.3 two-criteria movement synchronization scheduling problem 

has been defined. Method for solving the problem has been described. Presented 

models and algorithms are based on the papers (Tarapata 2001; 2005b; 2007a; 

2008a; 2008d; 2009a; 2010b). 

4.2. Movement Synchronization Scheduling (MSS) 

4.2.1. Scheduling Models of Synchronous Movement 

4.2.1.1. Notations and definitions 

Let us assume that we have a directed graph G that defines the structure of 

the terrain (divided into squares, hexagons - see chapter 2), ,G GG V A= , V= GV ,   

VG – set of graph nodes (as centre of terrain squares, crossroads), AG – set of graph 

arcs, AG⊂VG×VG,  A= GA . On each arc we have a defined value , 'n nd  of function d, 

which describes the terrain distance between the graph nodes n and n’. K objects 

(columns, trucks, tasks) move from source nodes vector s=(s1, s2,…, sK) to 

destination nodes vector t=(t1, t2,…, tK) of G. For further discussion we accepted the 

following notations (similar notations have been given in chapter 3.3.3.1, ≡ ( )s
ks i k , 

≡ ( )d
kt i k ): 

( )
0 1( , )  =  ( ) ,  ( ), ...,  ( ), ...,  ( )kRr

k k k ks t i k s i k i k i k t= =
k k

I = I
  

(4.1)

( )
0 1( ) ( ), ( ), ..., ( ), ..., ( ) ( )kRr

k kI k k k k Iτ τ τ τ τ= = =
k k

T T    (4.2)

( )0 1 1 2 1( ), ( ) ( ), ( ) ( ), ( )
( ) , , ...,  R Rk k

k k k
k k k i k i k i k i k i k i k

V I V v v v
−

= =    (4.3) 

where Ik – vector of nodes describing the path for the k-th object, 

( )
1

{1,..., }
( ), ( )

k

m m
G

m R
i k i k A−

∈

∀ ∈ ; ( )ri k  – the r-th node on the path for the k-th object; sk,  

tk – source and destination nodes for the k-th object; Tk – vector of time instances of 

achieving the nodes belonging to the path for the k-th object; ( )r kτ  – time instance 

of achieving node ( )ri k  by the head of the k-th object, 1

1, 0, 1
  ( ) ( ) 0r r

k K r Rk

k kτ τ

+

= = −

∀ ∀ ≥ ≥  

and 0

1,
 ( ) 0

k K
kτ

=

∀ = ; ( ) ( )kR

kk Iτ τ=  – time of achieving destination node by the k-th 

object; Vk – vector of velocities 1( ), ( )r r

k

i k i k
v

+
 of the k-th object on the arc ( )

1( ), ( )r ri k i k+  

of its path; Rk  – number of arcs belonging to the path of the k-th object. For the set 
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Π(s,t) describing the set of vectors I(s,t) of paths from s=(s1, s2,…,sK) to t=(t1, t2,…,tK) 

we have defined time *
τ  as the earliest time of achieving the destination node by 

the most delayed object: 

1 2

*

( , ) ( , ,..., ) ( , ) {1,..., }
min  max ( )

K
k

I s t I I I s t k K
Iτ τ

= ∈Π ∈

=       (4.4) 

Let k* denote the index of the object for which the moment of achieving the 

destination node for its path is the latest among paths for other objects, i.e. 
** *

{1,..., }
( ) max ( )k kR R

k K
k k k kτ τ

∈

= ⇔ =  . Let  

( )1 2( ),  ( ), ...,  ( ), ...,  ( )
kk p PIP i k i k i k i k=       (4.5) 

denote a vector of nodes (checkpoints) at which we must align the head of the k-th 

object in relation to the heads of other objects, where ( )pi k – the p-th element of IPk 

satisfying: ∀ = ∃ ∈ =1,  {1,..., }  ( ) ( )r
k k pp P r R i k i k  and ( ) {1,..., } ( ) ( )r

p k pr k r R i k i k= ∈ ⇔ = . 

The form of IPk and ( )pr k  indicate that the path for the k-th object must cross by 

nodes belonging to IPk. Let, by analogy  

( )1 2( ),  ( ), ...,  ( ), ...,  ( )
kk p PTP k k k kτ τ τ τ=      (4.6)  

denote ordered set of time instances of achievement particular alignment nodes 

from set IPk by the k-th object head, ( )p kτ  denotes moment of achieving the p-th 

alignment node by the k-th object, 

1

0

( ), ( )
{0,..., ( ) 1}

( ) ( )  r r

p

p i k i k
r r k

k k cτ τ
+

∈ −

= + ∑      (4.7) 

where:  
+

+

+

=

1

1

1

( ), ( )

( ), ( )

( ), ( )

r r

r r

r r

i k i k

ki k i k

i k i k

d
c

v
       (4.8) 

describes real movement time (time-cost) of the k-th object on the arc 

( )
1( ), ( )r r

Gi k i k A+

∈  between ir(k ) and ir+1(k ) nodes of its path. 

Additionally, we made the assumption that P1=P2=...=PK=N, i.e. for all objects  

exist the same number of alignment points (nodes). Let us define for each p=1,..,N  

the following characteristics: 

max

{1,..., }
max ( )p p

k K
kτ τ

∈

=         (4.9) 

1

1
( )

K
avg

p p
k

k
K

τ τ

=

= ∑          (4.10) 

* *
( ) ( ) ( )τ τ τ∆ = −p p pk k k        (4.11) 
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* *

{1,..., }
max ( )τ τ

∈

∆ = ∆
p p

k K
k         (4.12) 

The most important criteria for movement synchronization scheduling can be 

divided into two categories. The first category is time of movement of K objects. 

We can define two basic measures of this category:  

 (C.1.1):  max

{1,..., }
max ( ) minkR

k K
kτ τ

∈

= →       (4.13) 

 (C.1.2): 
1

( ) mink

K
R

k

kτ

=

→∑        (4.14) 

The second category is "distance" between times of achieving alignment 

points by all of K objects. We can define four main measures of this category: 

(C.2.1): ( )
max

1 1

( ) min
N K

p p
p k

kτ τ

= =

− →∑∑        (4.15) 

(C.2.2): ( )
max

{1,..., } {1,..., }
min max ( ) minp p

p N k K
kτ τ

∈ ∈

− →     (4.16) 

(C.2.3): 
1 1

( ) min
K N

avg
p p

k p

kτ τ

= =

− →∑∑        (4.17) 

(C.2.4): 
{1,..., } {1,..., }
min max ( ) minavg

p p
p N k K

kτ τ

∈ ∈

− →       (4.18) 

Presented criteria have the following interpretation: C.1.1 minimizes the time 

of achieving destination node by the last object (the most delayed); C.1.2 minimizes 

the total time of achieving destination nodes by all objects; C.2.1 minimizes total 

differences in times of achieving all checkpoints by all objects; C.2.2 minimizes the 

minimal of maximal differences in times of achieving any checkpoint by any object; 

C.2.3 minimizes total average differences in times of achieving all checkpoints by 

all objects; C.2.4 minimizes the minimal of maximal average differences of 

achieving any checkpoint by any object. 

4.2.1.2. Formulation of movement synchronization problem with time (MSST) 

One of the formulations of the optimization problem for movement 

synchronization of K objects can be defined as follows (we use criteria C.2.1 

defined by (4.15)): for fixed paths Ik of each k-th object to determine such 

+
= − =1( ), ( )

,  0, 1,   1,r r

k
ki k i k

v r R k K  that 

( )
max

1 1

( ) min
N K

p p
p k

kτ τ

= =

− →∑∑       (4.19) 

with constraints: 
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1 1

max

( ), ( ) ( ), ( )
( ),         0, 1,   1,r r r r

k
ki k i k i k i k

v v k r R k K
+ +

≤ = − =

 
  (4.20)   

1( ), ( )
0,                          0, 1,   1,r r

k
ki k i k

v r R k K
+

> = − =    (4.21) 

where 1

max

( ), ( )
( )r ri k i k

v k
+

 describes the maximal velocity of the k-th object resulting from 

its technical properties and topographical condition on the arc ( )
1( ), ( )r r

Gi k i k A+

∈ . 

Taking into consideration (4.7) and (4.9) we can write (4.19) as follows: 

1 1

1 1

( ), ( ) ( ), ( )0 0

{1,..., }
1 1 {0,..., 1} {0,..., 1}( ), ( ) ( ), ( )

    ( )    ( )

max ( )  ( )  min
r r r r

r r r rj k

pp

N K
i j i j i k i k

k kj K
p k r R r Ri j i j i k i k

r r kr r j

d d
j k

v v
τ τ

+ +

+ +

∈

= = ∈ − ∈ −

≤
≤

    
    

+ − + →    
   
   

∑∑ ∑ ∑ (4.22) 

Path Ik for the k-th object may be disjoint or not and must cross at fixed 

alignment points or we have to dynamically determine these points (e.g. during 

movement simulation/realization). In the first case we have an NP-hard 

optimization problem and we can solve it using approximation algorithms for 

finding disjoint paths (see chapter 3.4). In the second case we can use a two-stage 

approach: (*) finding the best paths for K objects iteratively using methods for 

finding the m-th (1st, 2nd, 3rd, etc.) best path for each of the K objects (Eppstein, 

1999) and visiting specified nodes (Ibaraki, 1973; Ibaraki et al., 1978);  

(**) synchronizing movement of K objects by solving problem (4.19)-(4.21) and 

using algorithms described in chapter 4.2.2 (Tarapata, 2008d; 2009a).  

The multicriteria approach to movement synchronization scheduling is considered 

in chapter 4.3. 

We can consider one of the extensions of problem (4.19)-(4.21): adding  

a constraint as follows 

1

1

( ), ( )0 max

{0,..., 1} ( ), ( )

( )  ,    1,
r r

r rk

i k i k

k
r R i k i k

d
k T k K

v
τ

+

+∈ −

+ ≤ =∑     (4.23) 

we would like to find such a movement schedule that achieving the earliest 

moment of destination node by the latest object is no greater than max *T τ≥ . 

To solve the problem (4.19)-(4.21) with the additional constraint (4.23), in 

generality, we define this problem in its changed form: for fixed paths Ik of each  

k-th object to determine such xk,p, k=1,…,K, p=1,…., N that: 

{1,..., }
1 1 1 1

max ( ) ( ) min
p pN K

p ji p ki
j K

p k i i

j x k xτ τ

∈

= = = =

    
+ − + →    

    
∑∑ ∑ ∑   (4.24) 

with constraints: 
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1

( )
N

kp
p

x FT k
=

≤∑ ,        k=1,...,K       (4.25) 

0kpx ≥ ,            k=1,...,K ,   p=1,...,N     (4.26) 

where xkp describes the time instance which is added to ( )p kτ  for the k-th object in 

its p-th alignment point (node). It can be observed that '

1

( ) ( )
p

p ki p
i

k x kτ τ

=

+ =∑  which 

can be used in algorithms in chapter 4.2.2 as a modified (by algorithms) moment of 

achieving the p-th alignment point by the k-th object. Therefore, if we denote 
'max 'max '( ) ( )p p pk kτ τ τ∆ = − , where 'max

pτ  is defined like in (4.9), then function (4.24) has 

an equivalent form of 'max

1 1

( ) min
N K

p
p k

kτ

= =

∆ →∑∑  and we obtain (4.19). Free time FT(k) 

for the k-th object we define as: max( ) ( )kRFT k T kτ= − . 

We can observe that problem (4.19)-(4.21) is similar to a problem of task 

scheduling on parallel processors (Leung, 2004). The following similarities exist:  

(a) scheduling the problem before critical lines to minimize the sum of maximal 

delays in alignment points (nodes); the p-th critical line is created by nodes 

(1), (2),..., ( )p p pi i i K ; (b) we have parts of the path (arcs) as tasks; (c) we have moved 

objects as processors (K); (d) tasks are indivisible and dependent (the dependence 

is defined by each of the arc ( )
1

{1,..., }
( ), ( )

k

m m
G

m R
i k i k A−

∈

∀ ∈  belonging to the path for 

each of the object). Differences: (a) tasks (arcs of the path) are assigned to 

processors (objects) (we have no influence on this assignment) and we decide only 

on the delays of the operation of processors (to increase realization time of tasks). 

4.2.1.3. Formulation of movement synchronization problem with a group 

pattern (MSSD) 

In chapter 4.2.1.2 we have defined movement synchronization of many 

objects with time (MSST): synchronization has been done considering achievement 

times of checkpoints. Here, we consider movement synchronization using some 

group patterns: in this case synchronization will be done according to some 

movement patterns and taking into account keeping terrain distances between 

objects resulting from a pattern. To define the MSSD problem we give some 

definitions. 

As a group pattern (j-th) of the K objects numbered from 0 to K–1 we 

understand the following 2K-dimensional vector: 

( )0 0 1 1 1 1, , , , ..., ,j j j j

K Kx y x y x y
− −

∆ ∆ ∆ ∆       (4.27) 
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where x0, y0 describe coordinates of the reference object (e.g. vehicle of 

commander).  

With reference to this object we can set the location of the other objects in the 

group. The pairs ( ),j j

k kx y∆ ∆ , 1, 1k K= −  allow us to set coordinates of the k-th 

object inside the j-th group pattern as follows: 

( ) ( )0 0, ,j j j j

k k k kx y x x y y= + ∆ + ∆       (4.28) 

Additionally, we assume that there exists some a tolerance range δ

j  for 

values ,  j j

k kx y∆ ∆ , 1, 1k K= − . It means that coordinates of the k-th object in the j-th 

group pattern are defined as follows: 

( ) ( )0 0, ,j j j j j j

k k k kx y x x y yδ δ= + ∆ ± + ∆ ±      (4.29) 

If coordinates of each object in a group satisfy (4.29) then we assume that the 

j-th group pattern is kept. It is important to say that a group pattern (4.27) is 

defined under the assumption that an angle α between the direction vector of the 

group and axis 0y in the basic coordinate system is equal 0o. Hence, coordinates 

(4.28) and (4.29) are determined using this assumption. Relation between 

coordinates in the basic system 0xy and rotated 0XY with α angle is presented in 

(4.31). Examples of typical movement group patterns are presented in Fig. 4.1. It 

has been assumed that α=0o, that is the direction vector of the group cover 0y axis 

of the basic coordinate system. 

At the moment t current location of group is defined as follows: 

( )0 0 1 1 1 1( ), ( ), ( ), ( ), ..., ( ), ( ),K KX t Y t X t Y t X t Y t α
− −

   (4.30) 

where coordinates in (4.30) are determined in the coordinate system rotated with  

angle α with relation to the basic coordinate system and α describes the angle 

between the direction vector of the group and axis 0y in the basic coordinate 

system. Relation between coordinates in the basic system 0xy and rotated 0XY with 

angle α is the following: 

( ) ( ), cos sin , sin cosj j j j j j

k k k k k kx y X Y X Yα α α α= ⋅ − ⋅ ⋅ + ⋅  (4.31) 

If we denote with ( )0 0( ), ( )x t y t  the location of the reference object at the 

moment t then the current, pattern location of the K considered objects grouped 

with j-th group pattern in the basic coordinate system at the moment t is defined as 

follows: 

 ( )0 0 1 1 1 1( ), ( ), ( ), ( ), ..., ( ), ( )j j j j

K Kx t y t x t y t x t y t
− −

    (4.32) 
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where: 0( ) ( )j j

k kx t x t x= + ∆ , 0( ) ( )j j

k ky t y t y= + ∆  describe the coordinate of the k-th 

object in the group according to the j-th pattern at the moment t in the basic 

coordinate system. 

Since the "distance" dj(t) of the current group location from the j-th group 

pattern at the moment t we can understand the following function (with parameter 

n>0): 

( )

−

=

= +∑
11

1

( ) ( ) ( )
k k

K
j n n n

x y
k

d t q t q t        (4.33) 

where: 

( ) ( ),     when ( ) [ ( ) , ( ) ]
( )

0                ,     otherwisek

j j j j j
k k k k k

x

x t x t   x t x t x t
q t

δ δ − ∉ − +

= 


 (4.34) 

( ) ( ),     when  ( ) [ ( ) , ( ) ]
( )

0                ,      otherwisek

j j j j j
k k k k k

y

y t y t  y t y t y t
q t

δ δ − ∉ − +

= 


 (4.35) 

 

 

Fig. 4.1. Examples of typical movement group patterns for K=5 objects 

 

We also assume that we have set, for each k-th object in the group, the movement 

path ( )
0 1( , ) = ( ) ,  ( ), ...,  ( ), ...,  ( )kRr

k k k ks t i k s i k i k i k t= = =
k k

I I
 
described in

 
(4.1) from the 

source node 0( ) ki k s=  to the destination node ( )kR

ki k t= , 0, 1k K= −  (apart from 
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how can we determine these paths; we can use methods from chapter 3). 

Moreover, we assume that these paths assure us a satisfying condition, which 

concerns with distances j j

kx δ∆ ±  (see (4.29)) from group pattern, for each k-th 

object in the group. 

In the considered problem we want to set the movement speed for each object 

in the group in such a way, to minimize the total terrain distances from the group 

pattern in such moments when the reference object achieves each node on its path. 

This problem is defined in detail as follows: we want to find such values of speed 

1( ), ( )
0r r

k

i k i k
v

+
>  for all objects on each arc ( )

1( ), ( )+r ri k i k
 
of the path Ik, 1, 1kr R= − , 

0, 1k K= − , to minimize the value of the distance from group pattern defined as 

below (MSSD problem): 

0

1

( ) min
R

j
p

p

d t
=

→∑         (4.36) 

with constraints: (4.20) and (4.21)        

where tp denotes achieving the moment of the p-th node on the path for the 

reference object (with number k=0), 

1

1

(0), (0)
1

r r

p

p i i
r

t c
+

−

=

=∑          (4.37) 

1

1

( ) | ( )| | ( )|
k k

K
j

p x p y p
k

d t q t q t
−

=

= +∑       (4.38) 

and 1( ), ( )r ri k i k
c

+
 defined by (4.8), ( )

kx pq t t=  defined by (4.34), ( )
ky pq t t=  defined by 

(4.35). 

Let us denote with 
(0)

( )p pi
x t , 

(0)
( )p pi

y t  coordinates of the reference object (with 

number 0) in the p-th node (0)pi  on its path at the moment tp. Pattern coordinates 

of the k-th object in the group according to the j-th pattern we calculate as follows: 

(0)
( ) ( )p

j j

k p p ki
x t x t x= + ∆         (4.39) 

(0)
( ) ( )p

j j

k p p ki
y t y t y= + ∆        (4.40) 

Coordinates xk(tp), yk(tp) of the current location of the k-th object in the group at the 

moment tp we calculate according to the following rule. First, we must determine 

between which nodes on the path the k–th object is located at moment tp. We notice 

that the k-th object at the moment tp is located between nodes on its path with such 

numbers *
kr  and * 1kr +  for which the following formula is fulfilled: 
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*

* 1( ), ( )
2

k

r r
k

r

pr i k i k
r

t c t
−

=

= <∑   and  

*

* 1

1

1 ( ), ( )
2

k

r r
k

r

pr i k i k
r

t c t
−

+

+

=

= >∑    (4.41)  

If 

*

* 1( ), ( )
2

k

r r
k

r

pr i k i k
r

t c t
−

=

= =∑ , then the i-th object is located inside the node of its path 

with number *
ir  

at the moment tp. Then, coordinates of the current location of the  

i-th object at the moment tp are the following: 
*

( ) ( ( ))kr

k px t x i k= ,
*

( ) ( ( ))kr

k py t y i k= , 

where 
*

( ( ))krx i k , 
*

( ( ))kry i k  denote coordinates of node 
*

( )kri k , in which the i-th object 

is located. Otherwise, when the i-th object is located between nodes with numbers  
*

kr  and * 1kr + , the coordinates of the current location of the object are set according 

to the procedure described in Fig. 4.2. In this figure dist denotes the distance 

covered in the time of *
k

p r
t t−  with the k-th object moving from node 

*

( )kri k  to node 

* 1( )kri k+

. This distance is calculated from the following formula:  

+

= ⋅ −* * *1
,( ) ( )

( )
r rk k k

k
p ri k i k

dist v t t        (4.42) 

where 
+

* * 1
,( ) ( )r rk k

k

i k i k
v

 
denotes the speed of the k-th object between nodes 

*

( )kri k  and 

* 1( )kri k+

.  

 

 

Fig. 4.2. Coordinates ( ( ), ( ))k p k px t y t
 
determining 

 

Having dist we can calculate a and b from the system of equations: 

2 2 2dist a b

A a

B b

 = +




=

         (4.43) 

where 
* *1| ( ( )) ( ( ))|k kr rA y i k y i k+

= − , 
* *1| ( ( )) ( ( ))|k kr rB x i k x i k+

= − . We obtain: 
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2

2

2

,      when   0

1

0             ,     when   0

dist
B

Ab
B

B


≠


= +

 =

      (4.44) 

,      when   0

  ,     when   0

A b
B

a B
dist B

⋅
≠

= 


=

       (4.45) 

Coordinates of the current location of the i-th object at the moment tp are used in 

equations (4.34), (4.35) and we can calculate them as follows: 

* * *

* * *

1

1

( ( )) ,      when  ( ( )) ( ( ))
( )

( ( )) ,      when  ( ( )) ( ( ))

k k k

k k k

r r r

k p r r r

x i k b x i k x i k
x t

x i k b x i k x i k

+

+


+ <

= 
− ≥

   (4.46) 

* * *

* * *

1

1

( ( )) ,      when  ( ( )) ( ( ))
( )

( ( )) ,      when  ( ( )) ( ( ))

k k k

k k k

r r r

k p r r r

x i k a y i k y i k
y t

x i k a y i k y i k

+

+


+ <

= 
− ≥

   (4.47) 

Problem (4.36)  with constrains (4.20) and (4.21)  is a nonlinear programming 

problem and may be solved using one of commercial optimization packages 

(GAMS, MATHEMATICA) by invoking appropriate functions. 

Another approach to define a group pattern has been presented in (Tarapata, 

2007b). In this paper a multicriteria weighted graph similarity method for 

structural patterns recognition has been described. This approach may also be used 

for planning group movement with group patterns. 

4.2.1.4. Example of the GAMS model for the MSST problem 

The source code of the GAMS model for solving the MSST problem with 

parameters defined in Table 4.3 (for FT(k) in Table 4.4, chapter 4.2.2.3) is presented 

below. We set the following equivalence between notations being used in the 

MSST model and in the source code of the GAMS model (notation x≡y describes 

that x in the GAMS model is equivalent to y in the MSST model):  

tau(k,p) ( )p kτ≡ , FT(k) ( )FT k≡ , max maxc(k,p) ( ) ( )p p pk kτ τ τ≡ ∆ = − ,
 

x(k,p) kpx≡ ,
 

1

cost_p(k,p)
p

ki
i

x
=

≡∑ , 
{1,..., }

1

max(p) max ( )
p

p ji
j K

i

j xτ

∈

=

 
≡ + 

 
∑ , z ≡ value of objective function. 

 
Sets 

k           objects for movement         

/ 1, 2, 3 / 

p           alignment points (checkpoints)              

/ 1, 2, 3, 4 / ; 

 

Alias (p, pp) 
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Alias (k, kk) 

 

Table 

tau(k,p)         table of values from (4.5) 

           1       2      3     4 

      3    2       13     16    17 

      2    5       9      13    16 

      1    7       12     14    15; 

 

Parameter 

FT(k)          free times 

/    3          1 

     2          2 

     1          0  / 

 

Parameter 

c(k,p)          table delta tau max p(k); 

 

c(k,p)=smax(kk,tau(kk,p))-tau(k,p); 

Variables 

x(k,p)             decision variable in (4.24)-(4.26) 

cost_p(k,p)        partial sum of x(k,p) from (4.24) 

max(p)             the first component of sum from (4.24) 

z                  value of objective function (4.24); 

 

Positive Variable x; 

 

Equations 

partial_cost(k,p)   partial sum of x(k,p) from (4.24) 

max_eq(p)           the first component of sum from (4.24) 

FT_constr(k)       the k-th inequality from (4.25) 

objective          value of objective function (4.24); 

 

partial_cost(k,p)..cost_p(k,p)=e=sum(pp$(ORD(pp)le ORD(p)),x(k,pp)); 

max_eq(p) .. max(p)=e=smax(k,tau(k,p)+cost_p(k,p)); 

FT_constr(k) .. sum(p, x(k,p)) =l=  FT(k); 

objective .. z  =e= sum((k,p),max(p)- (tau(k,p)+cost_p(k,p))); 

 

Model Schedule /all/ ; 

 

Solve Schedule using dnlp minimizing z ; 

 

Display x.l, z.l; 

 

 

Solving this problem using the GAMS/CONOPT solver we obtain: 
 

----     61 VARIABLE x.L  decision variable in (4.24)-(4.26) 

 

            1           4 

2       2.000 

3                   1.000 

 

----     61 VARIABLE z.L                   =       14.000  value 

             of objective function 4.24). 
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The obtained result is as follows: x(2,1) 2= , x(3,4) 1=  and remaining values 

of x(k,p) are equal to 0. The value of the objective function is equal to 14. 

4.2.2. Scheduling Algorithms for Movement Synchronization 

For solving the MSS problem two movement scheduling algorithms are 

presented: the first (MSA.1) is for solving problem (4.19)-(4.21) and the second 

(MSA.2) is for solving problem (4.24)-(4.26). Let us denote with ' ( )p kτ , as it has been 

written in chapter 4.2.1.2, modified (by algorithms) the moment of achieving the  

p-th alignment point by the k-th object and ' '( ) ( ) ( )p p pk k kτ τ τ∆ = − . 

4.2.2.1. Dynamic programming algorithm 

The first algorithm MSA.1 is based on the dynamic programming approach. 

Algorithm MSA.1 

For each p∈{1,...,N} recurrently compute the modified moments of 

achieving alignment nodes for K objects:  

 ( )
' '

1
{1,..., }

( ) max ( ) ( ) ,    for 1p p p
j K

k j j k Kτ τ τ
−

∈

= ∆ + ≤ ≤    (4.48) 

and in addition 
' 0
0 0( ) ( ) ( )k k kτ τ τ= = , 1 k K≤ ≤ . 

 

Let us note that '

{1,..., }
( ) 0p

k K
kτ

∈

∀ ∆ ≥ . It results from (4.48) and from the 

assumption that 1

1, 0 , 1
  ( ) ( ) 0r r

k K r Rk

k kτ τ

+

= = −

∀ ∀ > ≥ . Having '

{1,..., } {1,..., }
( )p

p N k K
kτ

∈ ∈

∀ ∀  and 

' ( )p kτ∆ , we can compute as follows: ' '
( )

{1,..., } {0,..., }
  ( ) : ( ) ( )

k

r r
q r

k K r R
k k kτ τ τ

∈ ∈

∀ ∀ = + ∆ , 

{ }( ) max {1,..., } : ( )pq r p N r k r= ∈ ≤  and 
1

1

( ), ( )'

' 1 '( ), ( ){1,..., } {0,..., }
  :=

( ) ( )

r r

r r

k

i k i kk

r ri k i kk K r R

d
v

k kτ τ

+

+

+

∈ ∈

∀ ∀

−

. The 

complexity of the MSA.1 algorithm is equal to ( )
2K NΘ  but we can obtain 

complexity ( )KNΘ  because for each p∈{1,…,N} ' ' '(1) (2) ... ( )p p p Kτ τ τ= = = . 

The idea of the algorithm is presented in Fig. 4.3 and the values of some 

characteristics in Table 4.1. 

 

Table 4.1. Values of τ ( )p k  and *( )p kτ∆  for data from Fig. 4.3 

 

k 
( )p kτ  *( )p kτ∆  

p=1 p=2 p=3 p=4 p=1 p=2 p=3 p=4 
3 2 13 16 17 5 -1 -2 -2 

2 5 9 13 16 2 3 1 -1 

1 7 12 14 15 0 0 0 0 
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Fig. 4.3. An idea of the MSA.1 algorithm: (a) paths for K=3 objects with times of achieving 

alignment nodes ip(k) on paths for each p=1,…4 and k=1,…,3; (b) the result of algorithm MSA.1 

– times of achieving alignment nodes by K objects have the same value equalling 25 

Theorem 4.1  

Algorithm MSA.1 solves the problem (4.19)-(4.21) optimally. 

Proof: 

For fixed p∈{1,...,N} the following condition is fulfilled: ' ' '(1) (2) ... ( )p p p Kτ τ τ= = = , 

hence ( )
'max '

1

( ) 0
K

p p
k

kτ τ

=

− =∑ , because the condition is fulfilled for each p∈{1,...,N}, so 

we obtain: ( )
'max '

1 1

( ) 0
N K

p p
p k

kτ τ

= =

− =∑∑ . 

♦  

 

It is easy to notice, that MSA.1 algorithm simultaneously minimizes 

criteria C.2.2, C.2.3 and C.2.4.  
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Let us note that if two alignment nodes p and p+1 are neighbouring nodes on 

a path for the k-th object, that is the following formula is fulfilled 
1

1( ) ( ) ( ) ( )r r
p pr k i k r k i k+

+

= ⇒ =  and then from (4.8) and (4.48) results that: 

( ) ( )

( )

( )

( ) ( )1

( ) ( )1

' ' '
1 1 1

{1,..., } {1,..., }

'
1 1 1 ( ), ( ){1,..., }

'
1 ( ), ( ){1,..., }

( ) max ( ) ( ) max ( ) ( ) ( )

         = max ( ) ( ) ( )

        max ( )

r l r lp p

r l r lp p

p p p p p p
l K l K

p p p i l i ll K

p i l i ll K

k l l l l l

l l l c

l c

τ τ τ τ τ τ

τ τ τ

τ

−

−

− − −

∈ ∈

− − −

∈

−

∈

= ∆ + = − + =

− + + =

= + ( ) ( )1

'
1 ( ), ( ){1,..., }
( ) max r l r lp pp i l i ll K
k cτ

−−

∈

= +

 (4.49) 

where ( ) ( )1 ( ), ( )
r l r lp pi l i l

c
−

 is defined by (4.8). 

Algorithm MSA.1, even though is very simple, has interesting properties 

(Theorem 4.2 and Theorem 4.3).  

Theorem  4.2 

Necessary conditions for obtaining, for each solution ' ( )N kτ

 
from MSA.1 algorithm, 

that: 
' *

{1,..., }
max ( ) ( )N N

k K
k kτ τ

∈

≤

        
(4.50) 

are following: 

1o. *

{1,..., } {1,..., }
( ) 0p

p N k K
kτ

∈ ∈

∀ ∀ ∆ ≥

       
(4.51) 

2o. * * *
1 2

{1,..., }
( ) ( ) ... ( )N

k K
k k kτ τ τ

∈

∀ ∆ ≤ ∆ ≤ ≤ ∆

     
(4.52) 

Proof: 

Ad.1o  

Let us assume conversely, that  

*
'

' {1,..., } ' {1,..., }
( ') 0p

p N k K
kτ

∈ ∈

∃ ∃ ∆ <

         
Then from (4.11) results that *

' '( ) ( ')p pk kτ τ< . But from (4.48) results that for each 

{1,..., }k K∈  the following equality is true: ( )
' '

' ' 1 '
{1,..., }

( ) max ( ) ( )p p p
l K

k l lτ τ τ
−

∈

= ∆ + , because 

the following condition is fulfilled: '
' 1

{1,..., }
( ) 0p

l K
lτ

−

∈

∀ ∆ ≥ , hence ' *
' ' '( ') ( ') ( )p p pk k kτ τ τ≥ > . 

If we place k’=k* and p’=N, then we obtain that ' * *( ) ( )N Nk kτ τ> . This contradiction 

ends the first part of the proof. 

Ad.2o 

Let us assume conversely, that 
* *
' ' 1

' {1,..., 1} ' {1,..., }
( ') ( ')p p

p N k K
k kτ τ

+

∈ − ∈

∃ ∃ ∆ > ∆

     
(4.53) 



Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation... 

 

127 

and that the following conditions, resulting from the first part of the proof, are 

satisfied: 
* *
' ' 1

{1,..., }
( ) 0,    ( ) 0p p

k K
k kτ τ

+

∈

∀ ∆ ≥ ∆ ≥

       
(4.54) 

We will show that if formula (4.53) is fulfilled, then ' * *
' 1 ' 1( ) ( )p pk kτ τ
+ +

> . Let us 

assume that p’=1. Then from (4.54) we have that: * *
1 2

' {1,..., }
( ') ( ')

k K
k kτ τ

∈

∃ ∆ > ∆  or 

equivalently 

* *
1 1 2 2

' {1,..., }
( ) ( ') ( ) ( ')

k K
k k k kτ τ τ τ

∈

∃ − > −

      
(4.55) 

From (4.48) and (4.54) results that 

τ τ τ

∈

= =

' *
1 1 1

{1,..., }
( ') max ( ) ( )

k K
k k k

        
(4.56) 

( ) ( )
' ' *
2 1 1 2 1 1 2

{1,..., } {1,..., }
( ') max ( ) ( ) ( ) max ( ) ( ) ( )

k K k K
k k k k k k kτ τ τ τ τ τ τ

∈ ∈

= − + = − +

 
(4.57) 

Taking into account (4.55) we obtain: 

* *
1 1 2 2( ) ( ') ( ') ( ) 0k k k kτ τ τ τ− + − >        (4.58) 

or equivalently 

* *
1 1 2 2( ) ( ') ( ') ( )k k k kτ τ τ τ− + >        (4.59) 

If we place (4.57) into (4.58) we obtain: 

( )
' * * *
2 1 1 2 1 1 2 2

{1,..., }
( ') max ( ) ( ) ( ) ( ) ( ') ( ') ( )

k K
k k k k k k k kτ τ τ τ τ τ τ τ

∈

= − + ≥ − + >

  

If we set k’=k*, then ' * *
2 2( ) ( )k kτ τ>  and we obtain a contradiction with (4.50). 

Therefore we have proved that apart from (4.51), the condition (4.52) is necessary 

to fulfil (4.50). 

♦  

Theorem 4.3 

Conditions (4.51) and (4.52) are jointly sufficient to satisfy formula (4.50) for each 

solution ' ( )N kτ  obtained from algorithm MSA.1. 

Proof: 

To prove the thesis of the theorem we need to show that if (4.51) and (4.52) are 

fulfilled then for each p=1,...,N
 

' * *( ) ( )p pk kτ τ≤

          
(4.60)
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We will prove it by induction on p. From (4.56) results that formula (4.60) is true 

for p=1. Let us place p=m and let us assume that (4.60) is true. We obtain 

( )
' * ' *

1
{1,..., }

( ) max ( ) ( ) ( )m m m m
l K

k l l kτ τ τ τ
−

∈

= ∆ + ≤

    
(4.61) 

We will show that formula (4.60) is true for m+1. We have 

 ( ) ( )
' * ' '

1 1 1
{1,..., } {1,..., }

( ) max ( ) ( ) max ( ) ( ) ( )m m m m m m
l K l K

k l l l l lτ τ τ τ τ τ
+ + +

∈ ∈

= ∆ + = − + (4.62) 

From formula (4.61) results that ' * *( ) ( )m mk kτ τ≤ , from assumption (4.51) 

results that *

{1,..., }
( ) ( )p p

l K
k lτ τ

∈

∀ ≥  and from assumption (4.52) that 

* *
1 1

{1,..., }
( ) ( ) ( ) ( )m m m m

l K
k l k lτ τ τ τ

+ +

∈

∀ − ≤ − , hence we can write (4.62) as follows:  

( ) ( )

( )

' * ' *
1 1 1

{1,..., } {1,..., }

* *
1 1 1 1

{1,..., }

( ) max ( ) ( ) ( ) max ( ) ( ) ( )

            max ( ) ( ) ( ) ( )

m m m m m m m
l K l K

m m m m
l K

k l l l k l l

k l l k

τ τ τ τ τ τ τ

τ τ τ τ

+ + +

∈ ∈

+ + + +

∈

= − + ≤ − + ≤

≤ − + ≤

 

Q.E.D.   

♦  
 

The main conclusion from Theorem 4.2 and Theorem 4.3 is as follows: if for 

each k=1,…,K we set rN (k )=Rk then from (4.60) we have: *' *

{1,..., }
max ( ) ( )k kR R

k K
k kτ τ

∈

≤ . It 

means that the value of *
τ  has not changed, i.e. the latest (the most delayed) 

moment of achieving destination nodes by all objects have not changed, and 

then constraint (4.23) is fulfilled. It means that MSA.1 optimally also solves 

problems (4.19)-(4.21) with constraint (4.23). 

In Fig. 4.4 we present conclusions from Theorem 4.2 and Theorem 4.3. 

Table 4.2 presents some characteristics of the problem from Fig. 4.4. 

 

Table 4.2. Values of ( )p kτ  and *( )p kτ∆  for data from Fig. 4.4 

 

k 
( )p kτ  *( )p kτ∆  

p=1 p=2 p=3 p=4 p=1 p=2 p=3 p=4 
3 1 5 11 13 3 3 3 4 

2 2 4 9 10 2 4 5 7 

1 4 8 14 17 0 0 0 0 
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Fig. 4.4. Paths for K=3 objects satisfying conditions of Theorem 4.2 and Theorem 4.3: (a) times  

of achieving alignment nodes ip(k) on the paths for each p=1,…4 and k=1,…,3; (b) result  

of algorithm MSA.1 – times of achieving alignment nodes by K objects have the same value 

equalling 17) and they are not greater than for object k*=1 

 

Theorem 4.4  

Let { }
* *

1( ) max ( ) ( ),0d
p p pk k kτ τ τ

−

∆ = ∆ − ∆  and 
{1,..., }

max ( )d d
p p

k K
kτ τ

∈

∆ = ∆  be defined. If  

*

{1,..., } {1,..., }
 ( ) 0p

p N k K
kτ

∈ ∈

∀ ∀ ∆ ≥  then the following formula is fulfilled: 

' * *
'

{1,..., }
' {1,..., }

'   

( ) ( ) d
p p p

p N
p N

p p

k kτ τ τ

∈

∈

≤

∀ = + ∆∑      (4.63) 

Proof: 

Let us note that if * * *
1 2

{1,..., }
( ) ( ) ... ( )N

k K
k k kτ τ τ

∈

∀ ∆ ≤ ∆ ≤ ≤ ∆  (the fulfilment of the 

condition (4.52)) then the following formula is fulfilled : 

{ }
* *

1
{1,..., }

( ) max ( ) ( ),0 0 0d d
p p p p

p N
k k kτ τ τ τ

−

∈

∀ ∆ = ∆ − ∆ = → ∆ =     
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hence ' * *( ) ( )p pk kτ τ= . 

To prove that formula (4.63) is true we will show, taking into account (4.48), that 

for each p=1,…,N the following formula is fulfilled: 

( )
' * * '

' 1
{1,..., }

' {1,..., }

'

( ) ( ) max ( ) ( )d
p p p p p

k K
p N

p p

k k k kτ τ τ τ τ
−

∈

∈

≤

= + ∆ = ∆ +∑   (4.64) 

We will prove, by induction on p, that the left side *
'

' {1,..., }

'

( ) d
p p

p N

p p

L kτ τ

∈

≤

= + ∆∑  of the 

formula (4.64) is equal to the right side ( )
'

1
{1,..., }

max ( ) ( )p p
k K

R k kτ τ
−

∈

= ∆ + , that is L=R. 

For p=1⇒ *
1 1( ) dL kτ τ= + ∆ , because { }

* *
1( ) max ( ) ( ),0d

p p pk k kτ τ τ
−

∆ = ∆ − ∆ ,   

{1,..., }
max ( )d d

p p
k K

kτ τ

∈

∆ = ∆  and from (4.11) results that { }
* *

1 0 1( ) max ( ) ( ),0 0d k k kτ τ τ∆ = ∆ − ∆ =  

for each k=1,…,K, hence 1 0d
τ∆ =  and *

1 ( )L kτ= . 

The right side of the formula (4.64) is equal: 

( ) ( )
' ' *
0 1 0 0 1 1 1

{1,..., } {1,..., } {1,..., }
max ( ) ( ) max ( ) ( ) ( ) max ( ) ( )

k K k K k K
R k k k k k k kτ τ τ τ τ τ τ

∈ ∈ ∈

= ∆ + = − + = =  

and we have obtained: L=R. 

For p=2: 

{ }( )

{ }( )

* *
2 1 2 2 2

{1,..., }

* * *
2 1 2

{1,..., }

* * *
1 2 2

{1,..., }

( ) ( ) max ( )

    = ( ) max max ( ) ( ),0

    = max max ( ) ( ),0 ( )

d d d

k K

k K

k K

L k k k

k k k

k k k

τ τ τ τ τ

τ τ τ

τ τ τ

∈

∈

∈

= + ∆ + ∆ = + ∆ =

+ ∆ − ∆ =

∆ − ∆ +

     

( ) ( )

( ) ( )

' '
1 2 1 1 2

{1,..., } {1,..., }

* *
1 1 2 1 2

{1,..., } {1,..., }

max ( ) ( ) max ( ) ( ) ( )

   = max ( ) ( ) ( ) max ( ) ( )

k K k K

k K k K

R k k k k k

k k k k k

τ τ τ τ τ

τ τ τ τ τ

∈ ∈

∈ ∈

= ∆ + = − + =

− + = ∆ +

   

From analysis of L and R we obtain, that to satisfy L=R it is required that
1 2, {1,..., }l l K∈

∃

for which 

{ }
* * * *
1 1 2 1 2 1 2 2 2max ( ) ( ),0 ( ) ( ) ( )l l k l lτ τ τ τ τ∆ − ∆ + = ∆ +      

that is 

{ }
* * * * *

1 1 1 2 2 1 2 2 1 2 2 2max ( ) ( ) ( ) ( ) ( ), ( ) ( ) ( )k l k l k k l lτ τ τ τ τ τ τ τ− − + + = ∆ +   

Hence 

{ }
* * *

1 1 1 2 1 2 1 1 2 2 2max ( ) ( ) ( ), ( ) ( ) ( ) ( )k l l k k l lτ τ τ τ τ τ τ− + = − +  (4.65) 

The equality (4.65) is always true because *
1 1 1( ) ( ) 0k lτ τ− ≥  (theorem assumption), 

hence * *
1 1 1 2 1 2( ) ( ) ( ) ( )k l l kτ τ τ τ− + ≥  and L=R for 1 2l l= .  
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Let us set p=m=2 and we will prove that formula (4.63) is true for m+1. Let us note 

that  
' * * ' * * *

' 1 1
' {1,..., }

'

( ) ( ) ( ) ( ) ( )d d
p p p p p p p

p N

p p

L k k k k kτ τ τ τ τ τ τ
− −

∈

≤

= = + ∆ = + ∆ − +∑   

For m+1 we obtain: 
' * * *

1 1( ) ( ) ( )d
m m m mL k k kτ τ τ τ

+ +

= + ∆ − +        

( )
'

1
{1,..., }

max ( ) ( )m m
k K

R k kτ τ
+

∈

= ∆ +         

and 

{ }( )

{

}

' * * * * *
1 1

{1,..., }

* * * * ' *
1 1

* * ' *{1,..., }
1

( ) max max ( ) ( ),0 ( ) ( )

max ( ) ( ) ( ) ( ) ( ),
   max

         ( ) ( ) ( )

m m m m m
k K

m m m m m

k K
m m m

L k k k k k

k k k k k

k k k

τ τ τ τ τ

τ τ τ τ τ

τ τ τ

+ +

∈

+ +

∈

+

= + ∆ − ∆ − + =

 ∆ − ∆ − + +

 =

 
− + + 

  

To satisfy L=R  it is needed that
1 2, {1,..., }l l K∈

∃ for which: 

{

}

* * * * ' *
1 1 1 1

* * ' * '
1 2 1 2

max ( ) ( ) ( ) ( ) ( ),

         ( ) ( ) ( ) ( ) ( )

m m m m m

m m m m m

l l k k k

k k k l l

τ τ τ τ τ

τ τ τ τ τ

+ +

+ +

∆ − ∆ − + +

− + + = ∆ +

    

that is 

 
{

}

* * * * ' *
1 1 1 1 1

* * ' * '
1 2 1 2

max ( ) ( ) ( ) ( ) ( ) ( ) ( ),

        ( ) ( ) ( ) ( ) ( )

m m m m m m m

m m m m m

k l k l k k k

k k k l l

τ τ τ τ τ τ τ

τ τ τ τ τ

+ + +

+ +

− − + − + +

− + + = ∆ +

  

Reducing this formula, we obtain: 

{ }

' * * * ' *
1 1 1 1

'
1 2 2 2

max ( ) ( ) ( ), ( ) ( ) ( )

( ) ( ) ( )

m m m m m m

m m m

l l k k k k

l l l

τ τ τ τ τ τ

τ τ τ

+ +

+

− + − + + =

= − +   

(4.66) 

If we set *
1 2l l k= =  then the equality (4.66) is fulfilled. The equality is fulfilled too, 

for any  1 2l l=  such that * *
1 1 1 1( ) ( ) ( ) ( )m m m ml l k kτ τ τ τ

+ +

− ≥ − . 

♦  
 

Conclusions from Theorem 4.4: 

1o  

( )

( )

' ' *

{1,..., } {1,..., }

*

{1,..., }
{1,..., }

max ( ) ( ) max ( ) ( )

                     ( ) max ( ) ( )

k k

k

R R

N N
k K k K

Rd
N p N

k K
p N

k k k k

k k k

τ τ τ τ

τ τ τ τ

∈ ∈

∈

∈

= + − =

= + ∆ + −∑
  

2o For each ( )
max *

{1,..., }
{1,..., }

( ) max ( ) ( )kRd
N p N

k K
p N

T k k kτ τ τ τ

∈

∈

≥ + ∆ + −∑  the following 

formula is fulfilled: ( )
'max '

1 1

( ) 0
N K

p p
p k

kτ τ

= =

− =∑∑ . 
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 From conclusions 1o and 2o results that for each Tmax, which satisfy condition 

1o the following formula is true: ' max

{1,..., }
max ( )kR

k K
k Tτ

∈

≤ , that is *
τ  has no greater value 

than Tmax and simultaneously the following condition is fulfilled: 

( )
'max '

1 1

( ) 0
N K

p p
p k

kτ τ

= =

− =∑∑ . We can check condition 2o in time of ( )KNΘ . 

4.2.2.2. Cost-profit approximation algorithm 

We can present the heuristic (greedy) algorithm MSA.2, which 

solves the problem (4.24)-(4.26) (it is equivalent to the problem (4.19)-(4.21) 

with constraint (4.23)). We define the notations used inside the algorithm: card(x) – 

cardinality of the set x; ( )pa k  – time instance which is added to ( )p kτ . We also 

define three sets of checkpoints which satisfy some conditions: 

{ }{ }

max: ( ) 0( ) ,..., ps p kP k s N τ

+

∈ ∆ >=      (4.67)  

{ }{ }

max: ( ) ( ) 0( ) , ..., p ps p k a kP k s N τ

≥

∈ ∆ − ≥=      (4.68) 

{ }{ }

max: ( ) ( ) 0( ) , ..., p ps p k a kP k s N τ

<

∈ ∆ − <=     (4.69) 

Functions Z(⋅) and L(⋅) describe "profit" (Z) and "cost" (L) of decreasing max( )p kτ∆  

with value ( )
ksa k , ( )

kk ss P k+

∈ :  

( )
max

( )

( )( ( )) ( ) ( )
kk k

sk

ss s p

p P k

P kZ a k a k card kτ

<

≥

∈

= ⋅ + ∆∑
   

(4.70) 

( )

max

( )

( ) ( )( ( )) 1
kk

sk

p ss

p P k

k a kL a k K τ

<

∈

∆ −= ⋅− ∑
    

(4.71) 

Value , ,: ( )k p k p px x a k= +  (in step 10 of the MSA.2 algorithm) is equal to the sum 

of ( )pa k  values that are determined for all iterations of MSA.2 and for every k and 

p. The idea of the algorithm MSA.2 consists of decreasing the value of  

OBJ= 'max

1 1

( )
N K

p
p k

kτ

= =

∆∑∑  by decreasing the value of 'max( )p kτ∆  for any k and p. 

To set an examination order vector KO of K objects in the MSA.2 algorithm 

we use an object order ObjOrder∈{0,…,3} strategy (the 3rd step of the algorithm): 

ObjOrder=0 – set elements of KO iteratively, from k=1 to k=K; ObjOrder=1 – set 

elements of KO randomly, with uniform distribution on the set {1,…,K}; 

ObjOrder=2 – set elements of KO iteratively, starting from such a k, which 

corresponds to the first greatest, second greatest, …, the K-th greatest values of the 

coordinates of the vector FT; ObjOrder=3 – set elements of KO iteratively, starting 

from such a k which corresponds to the first smallest, second smallest,…, the K-th 

smallest values of the coordinates of the vector FT. 
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Algorithm MSA.2 

Given sets: Ik, Tk, IPk, TPk for each k=1,…,K  and values 

ObjOrder, Strategy; 

Initialize:
{1,..., } {1,..., }

( ) : 0p
k K p N

a k
∈ ∈

∀ ∀ = ;
,

{1,..., } {1,..., }
: 0k p

k K p N
x

∈ ∈

∀ ∀ = ; counter:=N; 

* *

{1,..., }
( ) : ( ) ( )k kR R

k K
FT k k kτ τ

∈

∀ = − ; 'max max

{1,..., } {1,..., }
( ) : ( )p p p

k K p N
k kτ τ τ

∈ ∈

∀ ∀ ∆ = − ;  

1. WHILE 
( ) ( )

{1,..., }
( ) 0 >0

k K
FT k

∈

∃ > ∧ counter  DO 

2.   counter:=0; 

3.   To determine KO vector using ObjOrder; 

3a.  FOR k=KO[1],…,KO[K] DO 

4.     IF ( ) 0FT k >  THEN 

5. Use current Strategy to find ks  and ( )
ksa k ; 

6.  IF >( ) 0
ks

a k  THEN 

7.   'max 'max

{ ,..., }
( ) : ( ) ( )

k
k

p p s
p s N

k k a kτ τ

∈

∀ ∆ = ∆ − ; 

8.   'max'max 'max

{1,..., }( )
( ) ( ) : ( )

sk

pp p
j Kp P k

kj j ττ τ
<

∈∈

∆∀ ∀ ∆ = ∆ +
; 

9.   ( ) : ( ) ( )
ksFT k FT k a k= − ;  

10.   
, ,: ( )

k k kk s k s sx x a k= + ; 

11.   counter:=counter+1; ( ) : 0;
ksa k =  

12. END IF; 

13.    END IF; 

14.  END FOR; 

15. END WHILE. 

 

To find values of 1 ( )ks P k+

∈  and { }(
'max( ) 0,  min ( ), ( )

k ks sa k k FT kτ ∈ ∆  we use 

Strategy∈{0,…,4} (the 5th step of the algorithm): Strategy=0 – finds such a value sk 

and maximal value ( )
ksa k  for which condition ( ( )) ( ( ))

k ks sZ a k L a k>  is fulfilled; 

Strategy=1 – find such a value sk and value ( )
ksa k  for which value 

( ( )) ( ( ))
k ks s

Z a k L a k−  is maximal and positive; Strategy=2 – find such a value sk N 

times and randomly ( )
ksa k  for which value ( ( )) ( ( ))

k ks sZ a k L a k−  is maximal and 

positive; Strategy=3 – find N times randomly such values sk and ( )
ksa k  for which 

the value ( ( )) ( ( ))
k ks sZ a k L a k−  is maximal and positive; Strategy=4 – like for 

Strategy=3 but we draw values sk and ( )
ksa k

 
only one time. 

For example, when ObjOrder=0 and Strategy=0, the OBJ will be decreased 

when we select such a maximal value of { }(
'max( ) 0,  min ( ), ( )

k ks sa k k FT kτ ∈ ∆   for any 

1 ( )ks P k+

∈  that ( ( )) ( ( ))
k ks sZ a k L a k> . Let us take into account the second row  

of Table 4.4 (for k=2). It is profitable to set a1=2=min{max{2,4,3,1}, 2, 2}, because 
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when we decrease values of max(2)pτ∆  for p∈ 1 (2)P≥ ={1, 2, 3} then our "profit" 

(decreasing the value of OBJ) is equal: 

 ( )

1

max
1 1 1

(2)

( (2)) (2) (2) 2 3 1 7(2) p

p P

Z a a card P τ

<

≥

∈

= ⋅ + ∆ = ⋅ + =∑ .  

"Cost" is equal ( )

1

max
11

(2)

(2) (2)( (2)) 2 13 1 p

p P

aL a τ

<

∈

∆ −= ⋅ = ⋅− ∑  (increasing the value of 

OBJ). Afterwards, in steps 7-9 we decrease the value of 'max( )p kτ∆  and FT(k) with 

( )
ksa k  for all kp s≥ . In the case of max( ) ( ) 0

kp sk a kτ∆ − <  in step 7, we must increase 

this value like in step 8. The algorithm tries to decrease the value of OBJ until the 

free time FT(k) for all k will be equal to zero or when ( ) 0
ksa k >  (for which the 

condition ( ( )) ( ( ))
k ks sZ a k L a k>  is fulfilled) does not exist for any k and p (variable 

counter=0).  

Let { }
min max max

{1,.., }
( ) min ( ) ,    if  ( ) 0p p p p

p N
k k kτ τ τ τ τ

∈

∆ = − − >  and min( ) 1kτ∆ = , if 

max ( ) 0p p kτ τ− ≤ . Iteration number LWHILE of the WHILE loop can be estimated as 

follows: 
min{1,..., }

( )
max

( )
WHILE

k K

FT k
L

kτ
∈

 
<  

∆ 
. It is easy to observe that the complexity of 

separate steps of the algorithm is as follows: step 5 – O(N2), step 7 – O(N), step 8 – 

O(KN), steps 9-11 – O(1). Steps 4-14 are realized in the FOR loop K times, hence the 

complexity of the algorithm MSA.2 is equal ( )( )
2 2

WHILEO L K N KN+ . 

It is possible to improve the value of the objective function (4.19) (and, in 

consequence, (4.24)) and computational time in the MSA.2 algorithm using  

a preprocessing step (algorithm MSA.2.0). In the MSA.2.0 algorithm we try to 

decrease value of objective function (4.19) by decreasing 'max

{1,..., }
( )p

p N
kτ

∈

∀ ∆  values (for 

each k-th object), to obtain all non-negative values of 'max( )p kτ∆  (like in the MSA.2 

algorithm). Let us note that the method of the value of the ( )
ksa k  selection in the 

4th step of the algorithm guarantees, that the value of the cost function will be 

equal ( ( )) 0
ksL a k =  (see (4.71)) because of ( )sP k<

= ∅ . After running the MSA.2.0 

algorithm, we start the MSA.2 algorithm taking into the initialization step the 

values ,
{1,..., } {1,..., }

k p
k K p N

x
∈ ∈

∀ ∀ , 
{1,..., }

( )
k K

FT k
∈

∀  and 'max

{1,..., } {1,..., }
( )p

k K p N
kτ

∈ ∈

∀ ∀ ∆  obtained from the 

MSA.2.0 algorithm. Computational complexity of the MSA.2.0 algorithm can be 

estimated as follows: external loop FOR realizes K times, number of iteration LWHILE  

of the WHILE loop for fixed k is bounded by the value LWHILE (like in the MSA.2 

algorithm), step 4 has O(N) complexity, and steps 6-8 – O(N). Hence, the total 

complexity of the MSA.2.0 algorithm is equal ( )WHILEO KL N . 
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Algorithm MSA.2.0 

Given sets: Ik, Tk, IPk, TPk  for each k=1,…,K ; 

Initialize:
{1,..., } {1,..., }

( ) : 0p
k K p N

a k
∈ ∈

∀ ∀ = ;
,

{1,..., } {1,..., }
: 0k p

k K p N
x

∈ ∈

∀ ∀ = ; Exit:=false; 

* *

{1,..., }
( ) : ( ) ( )k kR R

k K
FT k k kτ τ

∈

∀ = − ; 'max max

{1,..., } {1,..., }
( ) : ( )p p p

k K p N
k kτ τ τ

∈ ∈

∀ ∀ ∆ = − ;  

1.  FOR k=1,…,K DO 

2.    WHILE Exit=false DO 

3.  IF FT(k)>0  THEN 

4.    Find such a minimal value 
1 ( )ks P k+

∈  and maximal value 

      
{ }

'max

{ ,..., }
( ) 0,  min max ( ), ( )

k
k

s p
p s N

a k k FT kτ

∈

 
∈ ∆  

, for which   

     condition  'max

{ ,..., }
( ) ( ) 0

k
k

p s
p s N

k a kτ

∈

∀ ∆ − ≥  is satisfied; 

5.     IF ( ) 0
ksa k >  THEN 

6.     'max 'max

{ ,..., }
( ) : ( ) ( )

k
k

p p s
p s N

k k a kτ τ

∈

∀ ∆ = ∆ − ; 

7.     ( ) : ( ) ( )
ks

FT k FT k a k= − ;  

8.     
, ,

: ( )
k k kk s k s s

x x a k= + ; 

9.    ELSE 

10.     Exit=true; 

11.    END IF; 

12.      ELSE 

13.         Exit=true; 

14.      END IF; 

15.    END WHILE; 

16.  END FOR; 

4.2.2.3. Numerical example of using the algorithms 

Presented in Fig. 4.5 are examples of using MSA.1 and MSA.2 algorithms 

(without using MSA.2.0) for K=3 objects and N=4 checkpoints. It can be observed 

(Table 4.3) that the value of the criterion function (4.19) before using the MSA.2 

algorithm is equal to 20 (sum of values in the table excluding the last column) and 

after using the MSA.2 algorithm (Table 4.5) equals 14. Table 4.4 presents initial 

values of functions 'max( )p kτ∆  and FT(k) before running algorithm MSA.2 (it has 

been assumed that max *T τ= ). Table 4.5 contains final values of these functions, 

after running the MSA.2 algorithm. Values of kpx  determined by the algorithm are 

equal zero excluding two values: 3,4 1x = , 2,1 2x = . Let us note that the same 

solution has been obtained solving the GAMS model in chapter 4.2.1.4. Taking into 

account values of kpx  and formula '

1

( ) ( )
p

p p ki
i

k k xτ τ

=

= +∑  we can obtain modified 

moments of achieving alignment nodes by all objects (Table 4.6). Taking into 

account the explanation presented in chapter 4.2.2.1 (after defining algorithm 
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MSA.1), values of ' ( )p kτ  and geometric distances 1( ), ( )r ri k i k
d

+
 between nodes 

1( ), ( )r ri k i k+  we can calculate modified velocities 1

'

( ), ( )r r

k

i k i k
v

+
 as follows: 

1

1

( ), ( )'

' 1 '( ), ( ){1,..., } {0,..., 1}
  :=

( ) ( )

r r

r r

k

i k i kk

r ri k i kk K r R

d
v

k kτ τ

+

+

+

∈ ∈ −

∀ ∀

−

      

 

 

Fig. 4.5. (a) Node-disjoint vector of the shortest paths for K=3 objects with achieved times of 
each N=4 alignment nodes for each object; (b) Results of realization of the MSA.1 (regular 

line) and the MSA.2 (dashed line) algorithms 

 

In Table 4.7 results of running the MSA.2.0 algorithm (before running MSA.2) 

are shown. From the table results that in this preprocessing step we decrease the 

value of the objective function with 4.  

Table 4.8 presents final values of functions 'max( )p kτ∆  and FT(k) after running 

the MSA.2.0 algorithm. 
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Table 4.3. Values of functions ( )p kτ and ( )kR
kτ

 
for example from Fig. 4.5a 

k 
p 

 

( )kR kτ

 
1 2 3 4 

3 2 13 16 17 19 

2 5 9 13 16 18 

1 7 12 14 15 20 

 

Table 4.4. Initial values of functions 'max( )p kτ∆  
and FT(k) (before running algorithm MSA.2) 

k 
p 

FT(k) 
1 2 3 4 

3 5 0 0 0 1 

2 2 4 3 1 2 

1 0 1 2 2 0 

 

Table 4.5. Final values of functions 'max( )p kτ∆  and FT(k) (after running algorithm MSA.2) 

k p 
 

FT(k) 
1 2 3 4 

3 5 0 0 0 0 

2 0 2 1 0 0 

1 0 1 2 3 0 

 

Table 4.6. Modified moments ' ( )p kτ  of achieving checkpoints by all objects (after running algorithm 

MSA.2) 

k 
p 

1 2 3 4 
3 2 13 16 17+1 

2 5+2 9+2 13+2 16+2 

1 7 12 14 15 

 

Table 4.7. Results of running algorithm MSA.2.0 

k sk ( )
ksa k  ( ( ))

ksZ a k  ( ( ))
ksL a k  

1 0 0 0 0 

2 1 1 4 0 

3 0 0 0 0 

 

Table 4.8. Final values of functions 'max( )p kτ∆  and FT(k) (after running algorithm MSA.2.0) 

 
k 

p 
 

FT(k) 
1 2 3 4 

3 5 0 0 0 1 

2 1 3 2 0 1 

1 0 1 2 2 0 
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4.2.3. Experimental Analysis of the Algorithms 

 In Fig. 4.6, Fig. 4.7, Fig. 4.8, Fig. 4.9 the average computational time (on 

computer with Intel Pentium IV 3GHz processor) in the logarithmic scale [msec] 

for the MSA.2 algorithm, with preprocessing (MSA.2.0 before MSA.2 algorithm) 

and without it using different pairs of the ObjOrder-Strategy is presented. The size 

of the problem (4.24)-(4.26) has been set as follows: values of K∈{1,…,100} and 

values of N∈{1,…,100} (values of K are divided into a group with a range 10, values 

of N are grouped into two sets: 1 ≤ N ≤ 50; 51 ≤ N ≤ 100). Over 100 000 randomly 

generated input data for the problem (4.24)-(4.26) have been examined. To 

compare obtained results from the MSA.2 algorithm, problem (4.24)-(4.26) has been 

also solved using the GAMS/CONOPT solver (ObjOrder-Strategy=-1- -1). 

 

 

Fig. 4.6. Average computational time in the logarithmic scale [msec] for the MSA.2 algorithm, with 
Preprocessing=true (using the MSA.2.0 algorithm),  ObjOrder∈{0,1}, Strategy∈{0,…,4}, N∈{1,…,50}; 
ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear optimization problem (4.24)-(4.26) 

using the GAMS/CONOPT solver 
 

 

Fig. 4.7. Average computational time in the logarithmic scale [msec] for the MSA.2 algorithm, with 
Preprocessing=true (using the MSA.2.0 algorithm),  ObjOrder∈{0,1}, Strategy∈{0,…,4}, N∈{51,…,100}; 

ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear optimization problem (4.24)-(4.26) 
using the GAMS/CONOPT solver 
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Fig. 4.8. Average computational time in the logarithmic scale [msec] for the MSA.2 algorithm, with 
Preprocessing=false (without using the MSA.2.0 algorithm), ObjOrder∈{0,1}, Strategy∈{0,…,4}, 

N∈{1,…,50}; ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear optimization problem  
(4.24)-(4.26) using the GAMS/CONOPT solver 

 

 

Fig. 4.9. Average computational time in the logarithmic scale [msec] for the MSA.2 algorithm, with 
Preprocessing=false (without using the MSA.2.0 algorithm), ObjOrder∈{0,1}, Strategy∈{0,…,4}, 

N∈{51,…,100}; ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear optimization problem  
(4.24)-(4.26) using the GAMS/CONOPT solver 

 

 It can be observed (comparing Fig. 4.6 and Fig. 4.8 or Fig. 4.7 and Fig. 4.9) that 

by using the preprocessing step (running algorithm MSA.2.0 before MSA.2) we can 

accelerate computational time between a few to twenty times faster than without 

the preprocessing step. It results from the fact that in the MSA.2.0 algorithm we try 

to decrease the value of the objective function (4.24) by decreasing 'max

{1,..., }
( )p

p N
kτ

∈

∀ ∆  

values (for each k-th object), in order to obtain all nonnegative values of 'max( )p kτ∆  

(like in the MSA.2 algorithm). Then, the MSA.2 algorithm decreases the number of 

iterations. For all pairs of the ObjOrder-Strategy we have obtained faster 

computational time than when using the GAMS/CONOPT solver. We have 

obtained the best computational time for the ObjOrder-Strategy: 0-0, 1-0 (also for 2-0 

and 3-0). 
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Fig. 4.10. Average percentage improvement of the objective function (4.24) value for the MSA.2 
algorithm, with Preprocessing=true (using the MSA.2.0 algorithm before MSA.2),  ObjOrder∈{0,1}, 

Strategy∈{0,…,4}, N∈{1,…,50}; ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear 
optimization problem (4.24)-(4.26) using the GAMS/CONOPT solver  

 

 

Fig. 4.11. Average percentage improvement of the objective function (4.24) value for the MSA.2 
algorithm, with Preprocessing=true (using the MSA.2.0 algorithm before MSA.2),  ObjOrder∈{0,1}, 

Strategy∈{0,…,4}, N∈{51,…,100}; ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear 
optimization problem (4.24)-(4.26) using the GAMS/CONOPT solver 

 

 

Fig. 4.12. Average percentage improvement of the objective function (4.24) value for the MSA.2 
algorithm, with Preprocessing=false (without using the MSA.2.0 algorithm before MSA.2),  

ObjOrder∈{0,1}, Strategy∈{0,…,4}, N∈{1,…,50}; ObjOrder=-1 and Strategy=-1 deal with solving the 
nonlinear optimization problem (4.24)-(4.26) using the GAMS/CONOPT solver 
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Fig. 4.13. Average percentage improvement of the objective function (4.24) value for the MSA.2 
algorithm, with Preprocessing=false (without using the MSA.2.0 algorithm before MSA.2),  

ObjOrder∈{0,1}, Strategy∈{0,…,4}, N∈{51,…,100}; ObjOrder=-1 and Strategy=-1 deal with solving the 
nonlinear optimization problem (4.24)-(4.26) using the GAMS/CONOPT solver 

 

In Fig. 4.10, Fig. 4.11, Fig. 4.12, Fig. 4.13 the average percentage improvement 

of the objective function (4.24) value for the MSA.2 algorithm, with or without 

preprocessing (MSA.2.0 algorithm) using different pairs of the ObjOrder-Strategy is 

presented (ObjOrder∈{0,1}, because for the ObjOrder∈{2,3} similar results have been 

obtained). The percentage improvement value, PI, of the objective function value is 

calculated as follows: 0 1

0

100%
OBJ OBJ

PI
OBJ

−

= ⋅ , where OBJ0, OBJ1 – values of the 

objective function (4.24) before and after running the MSA.2 algorithm, 

respectively. For example, 
20 14

100% 30%
20

PI
−

= ⋅ =  for data have been considered 

in chapter 4.2.2.3. It can be observed that for K>20 almost for all pairs of the 

ObjOrder-Strategy in the MSA.2 algorithm percentage improvement of the objective 

function value is better than for using the GAMS/CONOPT solver. This difference 

grows when the value of K grows.  

We have obtained the best results using the preprocessing step (Fig. 4.10 and 

Fig. 4.12) and the following pairs of the ObjOrder-Strategy: 0-1, 1-1 (also for 2-1 and 

3-1). Percentage improvement of the objective function (4.24) value for the best 

pairs of the ObjOrder-Strategy is equal from 65% to 80%. 

4.3. Multicriteria Movement Synchronization Scheduling (2CMSS 

problem) 

In chapter 4.2.1.1 two categories of criteria for movement of K objects have 

been defined: C.1 – time category and C.2 – "distance" category. We have taken 

into consideration the first type of category and we have proposed algorithms for 

solving one of the problems from this category (chapter 4.2.2).  
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In this chapter we present one of the formulations of the optimization 

problem for multicriteria movement synchronization scheduling of K objects 

taking into account criteria C.1.2 from (4.14) and C.2.1 from (4.15). 

4.3.1. Definition of the 2CMSS Problem 

We consider the following two-criteria optimization problem (taking into 

account criteria C.1.2 from (4.14) and C.2.1 from (4.15)): in the given graph G  (see 

definition in chapter 4.2.1.1) to find such node-disjoint paths Ik (see (4.1)) visiting 

specified nodes belonging to IPk (see (4.5)) for each k-th of K objects and to 

determine such velocities 1( ), ( )r r

k

i k i k
v

+
, 0, 1,   1,kr R k K= − =  that  

1 1

( ) ( ) mink

K K
R

k
k k

I kτ τ

= =

= →∑ ∑
        

(4.72) 

( )
max

1 1

( ) min
N K

p p
p k

kτ τ

= =

− →∑∑         (4.73) 

with constraints: (4.20) and (4.21).  

Let us note again that (4.72)=(4.14) and (4.73)=(4.15). 

We can formulate this problem as two-criteria optimization problem (nonlinear, 

discrete-continuous) of determining the K shortest node-disjoint paths via some 

alignment nodes in the restricted area (2CMSS problem) as follows (A, H, jnkx , 

ijout , ijin , inka , ikh , V, M, have been defined in chapter 3.4.2.1, vjk  describes the 

velocity of the k-th object on the j-th arc of graph G and it is equivalent to 1( ), ( )r r

k

i k i k
v

+
, 

jd  is equivalent to dw,w' for the j-th arc represented by a pair of nodes (w,w')): 

1 1 1

min
A M K

j

jnk
j n k jk

d
x

v
= = =

→∑∑∑         (4.74) 

1
0 0

{1,..., }
1 1 1 1

max ( ) ( ) min
M K A A

b b
bnl bnk

l K
n k b bbl bk

d d
l x k x

v v
τ τ

−

∈

= = = =

    
+ ⋅ − + ⋅ →    

    
∑∑ ∑ ∑

 

(4.75) 

with constraints: 

( )

1

,        1, ,  1, ,  1,
A

ij ij jnk ink
j

out in x a i V n M k K
=

− = = = =∑      (4.76) 

1 1 1

1,               1,
A M K

ij jnk
j n k

out x i V
= = =

≤ =∑∑∑       (4.77) 

1 1 1

1,                 1,
A M K

ij jnk
j n k

in x i V
= = =

≤ =∑∑∑       (4.78) 
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1 1

,                 1, ,  1,
A M

ij jnk ik
j n

out x h i V k K
= =

≤ = =∑∑      (4.79) 

1 1

,                   1, ,  1,
A M

ij jnk ik
j n

in x h i V k K
= =

≤ = =∑∑     (4.80)   

max( ),                           1, ,  1,jk jv v k j A k K≤ = =     (4.81) 

0,                                    1, ,  1, ,  1,jkv j V n M k K> = = =    (4.82) 

0,                                   1, ,  1, ,  1,jnkx j A n M k K≥ = = =    (4.83) 

Let us note that: (4.76)=(3.79), (4.77)=(3.80), (4.78)=(3.81), (4.79)=(3.82), (4.80)=(3.83), 

(4.83)=(3.84). 

We can isolate two subproblems from the 2CMSS problem: 

• NDSP problem: function (4.74) (equivalent to (4.72)), constraints (4.76)-(4.80) 

and (4.83) deal with searching for the K node-disjoint paths visiting specified 

nodes (represented by matrix A) and omitting restricted areas (represented by 

matrix H); 

• MS problem: function (4.75) (equivalent to (4.73)), constraints (4.81) (equivalent 

to (4.20)) and (4.82) (equivalent to (4.21)) deal with searching for such values of 

velocities on each arc belonging to the path for each object to minimize the total 

differences between achieving times in all alignment nodes for all objects. 

The NDSP problem is the same as NDRP-Sum (defined in section 3.4.2.1) when we 

set in NDRP-Sum: :
j

j

jk

d
d

v
= . 

Interpretation of constraints (4.76)-(4.80) and (4.83) have been described in 

chapter 3.4.2.1. Constraints (4.81) and (4.82) assure that no stops on each part (arc) 

of the path for the k-th object are permitted (velocity must be greater than zero) 

and velocity must be no greater than the maximal possible velocity resulting from 

technical properties of the k-th object being moved and topographical properties of 

the j-th arc.  

In the presented optimization problem we have AMK+AK decision variables 

and V(MK+K+2)+AK constraints (excluding (4.82),(4.83)). The problem is very hard 

to solve (especially for large graphs) even then we can observe that the matrix of 

the constraint coefficients (built on the basis of the left sides of the constraints  

(4.76)-(4.80)) is totally unimodular and aink, hik (right sides) are integers, hence the 

constraint (4.83) can be written as 0jnkx ≥  (instead of xjnk∈{0,1}). One of the main 

difficulty is the problem is nonlinear. 
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4.3.2. Methods for Solving 2CMSS Problem 

There are several methods to solve multicriteria problems such as 2CMSS, in 

generality (Ehrgott, 1997): hierarchization of objective functions (lexicographic 

solutions), metacriterion functions, compromise solutions, methods with threshold 

values, etc. Some of them have been described in chapter 3.3.4. 

Since the 2CMSS problem consists of two subproblems: NDSP and MS, we 

propose to use the two-stage algorithm to solve the 2CMSS problem: at first we 

solved the problem NDSP (criteria function (4.74), constraints (4.76)-(4.80) and 

(4.83)) by replacing vjk by max( )jv k  in (4.74), 1, ,  1,j A k K= = . After solving this 

problem we obtain node-disjoint shortest paths for all objects; it means that for 

each (the j-th) arc belonging to a path for each (the k-th) object we obtain the 

shortest time-cost arc value equalling 
max( )

j

j

d

v k
. Next, we solved the MS problem  

(criteria function (4.75), constraints (4.81) and (4.82)), which is based on making  

a correction (decreasing) of velocity value max( )jk jv v k≤  for each of the j-th part (arc) 

of the path, for each k-th object to achieve a "parallel movement effect" measured 

by the value of the function (4.75). This approach corresponds to searching for 

lexicographic solutions of the 2CMSS problem. Such a two-stage method for 

solving presented problems and such a priority order of optimization criteria are 

quite intuitive: at first we have to find the vector of shortest paths for K objects to 

set optimal paths, under the assumption that we use maximal possible velocities 

on each arc belonging to the path for each object, and next we try to decrease 

values of velocities to optimize the second criterion (4.75). 

For solving the NDSP problem we may use the SGDP algorithm described in 

chapter 3.4.3.1 and for solving the MS problem we may use MSA.1 or MSA.2 

algorithms described in chapters 4.2.2.1 and 4.2.2.2. 

4.3.3. Numerical Example 

In this chapter we present some practical example (corresponding with the 
problem from Fig. 4.5) of solving the 2CMSS problem for the following parameters 

(see Fig. 4.14a): graph  ,G GG V A= , V= GV =16, A= GA =120, K=3, N=4, s1=31,  

s2 = 13, s3 = 1, t1 = 30, t2 = 24, t3 = 12 , dj=10,  j∈{1,...,A}, i1(1) = 27, i2(1) = 22, i3(1) = 23, 
i4(1)= 29 , i1(2)= 15, i2(2)= 10, i3(2)= 11, i4(2)= 17 , i1(3)= 2, i2(3)= 4, i3(3)= 5, i4(3)= 6,  

max
31,32(1) 4.29v = , max

32,26(1) 4.29v = , max
26,27(1) 4.29v = , max

27 ,21(1) 4.0v = , max
21,22(1) 4.0v = ,

max
23,29(1) 10.0v = , max

29,30(1) 2.0v = ,  max
13,14(2) 4.0v = , max

14,15(2) 4.0v = , max
15,16(2) 5.0v = ,

max
16,10(2) 5.0v = , max

10,11(2) 2.5v = ,  max
11,17(2) 3.33v = ,  max

17 ,18(2) 10.0v = , max
18,24(2) 10.0v = , 

max
1,2 (3) 5.0v = , max

2,3 (3) 1.82v = , max
3,4 (3) 1.82v = , max

4,5 (3) 3.33v = , max
5,6 (3) 10.0v = , 

max
6,12 (3) 5.0v = . For all remaining arcs maximal velocities are equal 1.0.  
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Taking into account the idea of solving the 2CMSS problem, at first we need 

to solve the NDSP problem using the SGDP algorithm and maximal possible 

velocities. We obtain K=3 node-disjoint shortest paths visiting alignment nodes 

presented in Fig. 4.14b. To show that the problem corresponds with the problem 

from Fig. 4.5, let us note that we have obtained the following achieving times of 

alignment nodes for the k=2 object (see also Table 4.5) using formula (4.7): 

for i1(2)=15: 
10 10

5
4.0 4.0

+ = ,   for i2(2)=10 : 
10 10

5 5 4 9
5.0 5.0

+ + = + = , 

for i3(2)=11 : 
10

9 13
2.5

+ = ,   for i4(2)=17 : 
10

13 16
3.33

+ ≈ . 

All values of times of achieving alignment nodes are presented in Table 4.5.  

 

     
  (a)         (b) 

Fig. 4.14.  (a) Example of graph with indicated source (s1,...,s3), destination (t1,…,t3) and alignment 
nodes (ip(k), p = 1,..,4, k = 1,...,3) for K=3 objects and N=4 checkpoints for each object; (b) K=3  

node-disjoint shortest paths obtained from the SGDP algorithm and visiting alignment nodes ip(k) 

 

Next, having paths for the K objects obtained in the previous stage, we can 

solve the MS problem using the MSA.2 algorithm. We have obtained modified 

velocities on arcs belonging to the paths for K objects: v5,6(3) = 5.0, v13,14(2) = v14,15(2) 

=2.86, the remaining velocities have the same values equal maximal velocities. 

Modified times of achieving alignment nodes are presented in Table 4.6. For 

example, for the object k=2 we have obtained following modified times (using 

formula (4.7)):  

for i1(2) = 15 :  
10 10

7
2.86 2.86

+ ≈ ,  for i2 (2) = 10 : 
10 10

7 7 4 11
5.0 5.0

+ + = + = , 

for i3(2) = 11 : 
10

11 15
2.5

+ = ,  for i4 (2) = 17 : 
10

15 18
3.33

+ ≈ . 
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4.4. Summary 

In this chapter single- and multi-criteria optimization models and algorithms 

of movement scheduling for many objects to synchronize their movement (2CMSS 

problem) have been considered. The model consists of two parts: (1) node-disjoint 

path planning visiting specified nodes for K objects with a given vector of 

intermediate nodes for each one (NDSP problem); (2) movement synchronization 

in intermediate nodes (MS problem). The approaches presented in this chapter 

give possibilities to schedule synchronous movement of many objects and they are 

used in some simulation-based operational training support systems (Najgebauer 

et al., 2007b) at the planning stage of action (see also chapter 5.3). It can be shown 

that they are very fast (in comparison with GAMS/CONOPT (MSA.2) or 

GAMS/CPLEX (SGDP) solvers) and it is very important from the point of view of 

simulator reaction time on user interaction. During movement simulation 

(movement schedule realization) it is important for movement control and the 

reaction to deviations from the determined schedule (Tarapata, 2009a). These 

problems are essential especially in CGF or SAF systems (Petty, 1995) and they are 

considered in chapter 5 and chapter 6. Since some of the algorithms being 

discussed are heuristic (SGDP, MSA.2) it seems to be essential to provide necessary 

and sufficient conditions for obtaining optimal solutions.  

It is possible to consider many problems for synchronous movement based on 

the given approaches: we can modify the problem (4.24)-(4.26) in such a way that 

in each alignment node neither the delay nor the acceleration of all objects between 

themselves cannot be greater than the fixed value ∆T, and the criteria function 

describes the total time of achieving the destination nodes by all objects: 

,
1 1

( ) min
K N

N k i
k i

k xτ

= =

 
+ → 

 
∑ ∑

        
subject to: 

, ,
{1,..., }

1 1 1

max ( ) ( ) ,    1,...,
p pK

p j i p k i
j K

k i i

j x k x T p Nτ τ

∈

= = =

    
+ − + ≤ ∆ =    

    
∑ ∑ ∑

  

 ,
1

( )
N

k p
p

x FT k
=

≤∑ ,          k=1,...,K        

 , 0k px ≥ ,   k=1,...,K;     p=1,...,N        

Presented suggestions may contribute to further works. 

 

 

 

 

 



5. Automatization and Simulation of Selected Decision 

Processes 

5.1. Introduction 

In this chapter the idea and model of the command and control process 

applied for selected elements of decision automata for attack, defence and march 

on the battalion level and movement simulation of individual and group objects 

are considered. As it has been written in chapter 1, automation of battlefield 

processes are very rarely discussed in the literature; however some ideas we can 

come across in (Antkiewicz et al., 2011b; Courtemanche & Monday, 1994; Dockery 

& Woodcock, 1993; Hoffman H. & Hoffman M., 2000; Najgebauer, 1999a; 2008a; 

Najgebauer et al., 2007b; Ross et al., 2004; Sokolowski, 2002; Tarapata, 2008b). The 

decision automata being presented replaces battalion commanders in the simulator 

for military trainings and it executes two main processes (Antkiewicz et al., 2003; 

Najgebauer et al., 2007b): decision planning process and direct combat control. The 

decision planning process contains three stages: the identification of a decision 

situation, the generation of decision variants, the variants evaluation and the 

selection of the best variant, which satisfies the proposed criteria. For this reason, 

we can define the identification of the decision situation (the first stage of the 

decision planning process and the most interesting from the point of view of the 

automatization process) as a multicriteria weighted graph similarity decision 

problem (MWGSP) (Tarapata, 2007b) and present it in chapter 5.2.3. The remaining 

two stages of decision planning process (the variants evaluation and selecting the 

best variant) are described in detail in (Antkiewicz et al., 2003; 2004a; 2004b; 2008d; 

2011a; Najgebauer et al., 2007b): for each class of decision situations a set of action 

plan templates for subordinate and support forces are generated. In order to 

generate and evaluate possible variants the pre-simulation process based on some 

procedures: forces attrition procedure, slowing down the rate of attack procedure, 

utilization of munitions and petrol procedure is used. In the evaluation process the 

following criteria: time and degree of task realization, own losses, utilization of 

munitions and petrol are applied. We also present decision automata to a march 

which contains: the march planning process (containing: march organization 

determination and detailed march schedule determination) and the direct march 

control (containing: march simulation, identifying fault situations during a march 

simulation and automata reactions, velocity calculations and fuel consumption 

calculation). 
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The chapter is organized as follows. Chapters 5.2 and 5.3 (based on the 

papers (Tarapata 2007b; 2007e; 2008b; 2008c; 2010b)) contain description of 

automatization methods of the main battlefield processes (attack, defence and 

march) in simulation systems such as CGF. In these chapters, a decision automata, 

which is a component of the simulation system for military training, is described as 

an example. In chapter 5.4 (based on the papers (Tarapata 2000b; 2000f; 2003a; 

2005a; 2010b)) we present methods for movement simulation of individual and 

group objects based on the MODSIM simulation language. Presented in chapter 5.5 

are some conclusions concerning problems and proposition of their solution in 

automatization of decision processes in conflict situations. 

5.2. Identification of Decision Situations 

5.2.1. Description and Definition of the Problem 

The typical military decision planning process contains the following steps 

(see Fig. 5.1): 

• estimation of power of own and opposite forces, terrain, and other factors, 

which may influence on a task realization, 

• identification of a decision situation, 

• determination of decision variants (Course of Actions, CoA),  

• variants (CoA) evaluation (verification), 

• recommendation of the best variant (CoA) of the above-stated points, which 

satisfy the proposed criteria. 

The most important step of the decision planning process is an identification 

of the decision situation problem: this problem is that we must find the most 

similar battlefield situation (from earlier defined or ensuing situations, e.g. in 

knowledge base of battlefield situations, see Fig. 1.1) to the current one. 

Afterwards, the decision situation being identified is a basis for choosing CoA, 

because with each decision situation a few typical CoA frames (templates) are 

connected. The decision situation is classified according to the following factors: 

own task, expected actions of opposite forces, environmental conditions – terrain, 

weather, the time of the day and season of the year, current state of own and 

opposite forces in the sense of personnel and weapon systems.  

We define space of decision situations as follows: 

{ }1,..,8: ( )r rDSS SD SD SD
=

= =       (5.1) 

Vector SD represents the decision situation, which is described by the following 

eight elements: SD1 – command level of opposite forces, SD2 – type of task of 

opposite forces (e.g. attack, defence), SD3 – command level of own forces,  
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SD4 – type of task of own forces (e.g. attack, defence), SD5 – net of squares as  

a model of activities (terrain) area 
7

8

5
1,..,5
1,..,

i SDij
j SD

SD SD
=

=

 =   , 5 5,
1,..,8( )k

ij ij kSD SD
=

= . 

 

 

Fig. 5.1. Algorithm for selecting the best variant of action (Antkiewicz et al., 2005) 

 

For the terrain square with the indices (i,j) each of the elements denotes: 5,1
ijSD

 
– the 

degree of terrain passability, 5,2
ijSD

 
– the degree of forest covering, 5,3

ijSD
 
– the 

degree of water covering, 5,4
ijSD

 
– the degree of terrain undulating, 5,5

ijSD
 
–

 armoured power (potential) of opposite units, 5,6
ijSD

 
– infantry power (potential) 

of opposite units, 5,7
ijSD

 
– artillery power (potential) of opposite units, 5,8

ijSD
 
–

 coordinates of the square, 6SD  – the description of own forces: ( )
6

6 1,..,4i i
SD SD

=

= , 

6
1SD  – total armoured power (potential), 6

2SD  – total infantry power (potential), 
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6
3SD  – total artillery power (potential), 6

4SD  – total air fire support (antiaircraft) 

power (potential); SD7 – the width of activities (interest) in an area (number of 

squares), SD8 – the depth of activities (interest) in an area (number of squares). 

The set of decision situations patterns is given: { : }PDSS PS PS DSS= ∈ . For 

the current decision situation CS, we have to find the most similar situation PS 

from the set of patterns. In chapters 5.2.2 and 5.2.3 we present more formal 

definitions of "situations similarity". 

We have determined the subset of decision situation patterns PDSSCS, which 

are generally similar to the current situation CS, considering such elements like: 

task type, command level of own and opposite units and own units' potential: 

{ }
=

= = ∈ = = ≤ ∆1,..,6( ) : , 1,.., 4, ( , )CS i i i i potwlPDSS PS PS PDSS PS CS i dist CS PS Pot (5.2) 

where: 

{ }= − =

6 6( , ) max , 1, ..4potwl k kdist CS PS CS PS k    (5.3) 

and Pot∆  – the maximum difference of the potential of own forces (calibration 

parameter). 

5.2.2. Distance Vector Approach 

Here, we present the distance vector approach for solving the problem 

defined in chapter 5.2.1. We formulated and solved the multicriteria optimization 

problem (5.4), which allow us to determine the most matched pattern situation 

(PS) to the current one (CS) from the point of view of terrain and military power 

characteristics (Najgebauer et al., 2007b): 

( ), ,CS CS DZ PDSS F R=         (5.4) 

where: 
2:CS CSF PDSS R→                                                       (5.5) 

( ) ( )( , ), ( , )CS ter potF PS dist CS PS dist CS PS=                                      (5.6) 

( )

1

4
5, 5,

1 1 1

( , )
p pJI

k k
ter k ij ij

k i j

dist CS PS CS PSλ

= = =

 
= ⋅ −  

 
∑ ∑∑    (5.7) 

4

1

1, 0, 1,.., 4k k
k

kλ λ

=

= > =∑                                                  (5.8) 

( )

1

7
5, 5,

5 1 1

( , )
p pJI

k k
pot k ij ij

k i j

dist CS PS CS PSµ

= = =

 
= ⋅ −  

 
∑ ∑∑    (5.9) 

7

5

1, 0, 5, ..,7k k
k

kµ µ

=

= > =∑                                              (5.10) 

7 7min{ , }I CS PS= , 8 8min{ , }J CS PS=      (5.11) 
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( , ) :

( , ) ( , )

( , ) ( , )

CS CS

D ter ter

pot pot

Y Z PDSS PDSS

R dist CS Y dist CS Z

dist CS Y dist CS Z

 ∈ ×

 
= ≤ ∧ 
 

≤ 

    (5.12) 

 

Parameters kµ  and kλ  describes the weights for components calculating the 

value of functions distter  and distpot. The domination relation defined in (5.12) 

allows us to choose such a PS from PDSSCS , which has the best value of distter and 

distpot , that is the most similar to CS (non-dominated PS from the RD  point of 

view). The idea of the identification of the decision situation and CoA selection is 

presented in Fig. 5.2. Application of this method is presented in chapter 6.2 and in 

(Antkiewcz et al., 2011b). 

 

 

Fig. 5.2. The idea of identification of the decision situation and CoA selection  
(Antkiewicz et al., 2011b) 

5.2.3. Multicriteria Weighted Graphs Similarity (MWGSP) Approach 

In this chapter concept of multicriteria weighted graphs similarity and its 

application for pattern matching of decision situations is considered. The approach 

extends known pattern recognition approaches based on graph similarity with two 

features: (1) the similarity is calculated as structural and non-structural 

(quantitative) in a weighted graph, (2) choice of the most similar graph to graph 

representing pattern is based on a multicriteria decision. Application of the 

presented approach for pattern recognition of decision situations has been 

described in (Tarapata, 2007b; 2008b) and in chapter 5.2.3.5. 
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5.2.3.1. Structural objects similarity – a short overview 

Object similarity is an important issue in applications such as pattern 

recognition. With given a database of known objects and a pattern, the task is to 

retrieve one or several objects from the database that are similar to the pattern.   

If graphs are used for object representation this problem turns into 

determining the similarity of graphs, which is generally referred to as graph 

matching. Standard concepts in graph matching include (Farin et al., 2003; 

Kriegel & Schonauer, 2003): graph isomorphism, subgraph isomorphism, graph 

homomorphism, maximum common subgraph, error-tolerant graph matching 

using graph edit distance (Bunke, 1997), graph’s vertices similarity, histograms of 

the degree sequence of graphs. A large number of applications of graph matching 

have been described in the literature (Bunke, 2000; Kriegel & Schonauer, 2003; 

Robinson, 2004). One of the earliest applications was in the field of chemical 

structure analysis. More recently, graph matching has been applied to case-based 

reasoning, machine learning planning, machine vision, semantic networks, social 

networks, conceptual graph, monitoring of computer networks, synonym 

extraction and web searching (Bunke, 2000; Blondel et al., 2004; Champin & Solnon, 

2003; Kleinberg, 1999; Kriegel & Schonauer, 2003; Melnik et al., 2002; Robinson, 

2004; Senellart & Blondel, 2003; Tarapata & Kasprzyk, 2009c; 2010e; Tarapata et al., 

2010d). They include recognition of graphical symbols, character recognition, 

shape analysis, terrorist network analysis, three-dimensional object recognition, 

image and video indexing and others. It seems that structural similarity is not 

sufficient for similarity description between various objects. The arc in the graph 

gives only binary information concerning connection between two nodes. And 

what about, for example, the connection strength, connection probability or other 

characteristics? Thus, the weighted graph matching problem is defined, but in the 

literature it is relatively rarely considered (Almohamad & Duffuaa, 1993; 

Champin & Solnon, 2003; Tarapata, 2007b; Umeyama, 1988) and it is most often 

regarded as a special case of graph edit distance, which is a very time-complex 

measure (Bunke, 2004; Kriegel & Schonauer, 2003). Therefore, we define  

a multicriteria weighted graph similarity decision problem (MWGSP) and we show 

how to use it for pattern recognition (matching) of decision situations (PRDS) in 

the decision automata, which replaces commanders in simulators for military 

trainings (Najgebauer et al., 2007b). 

5.2.3.2. Definitions of structural and quantitative similarity measures between 

weighted graphs 

Let us define weighted graph WG as follows: 

{1,..., } {1,..., }, { ( )} , { ( )}
G G

i i LF j j LH
n N a A

WG G f n h a
∈ ∈

∈ ∈

=      (5.13) 
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where: G – Berge’s graph, ,G GG N A= , NG, AG – sets of graph’s nodes and arcs, 

{ }, ' : , 'G GA n n n n N⊂ ∈ , : n
i Gf N R→  – the i-th function described on the graph’s 

nodes, 1,...i LF= , (LF – number of node’s functions); : n
j Gh A R→ – the j-th function 

described on the graph’s arcs, 1,...j LH= (LH – number of arc functions). 

Let two weighted graphs GA and GB be given. We propose to calculate two 

types of similarities of the GA and GB: structural and non-structural (quantitative). 

To calculate structural similarity between GA and GB it is proposed to use the 

approach defined in (Blondel et al., 2004). Let A and B be the transition matrices of 

GA and GB. We calculate the following sequence of matrices: 

1 ,    0
T T

k k
k T T

k k F

BZ A A Z B
Z k

BZ A A Z B
+

+

= ≥

+

      (5.14) 

where Z0=1 (matrix with all elements equal 1); xT – matrix x transposition; 
F

x – 

Frobenius (Euclidian) norm for matrix x,  2

1 1

B An n

ijF
i j

x x
= =

= ∑∑ , nB – number of matrix 

rows (number of nodes of GB), nA – number of matrix columns (number of nodes of 

GA). Element zij of the matrix Z describes the similarity score between the i-th node 

of GB and the j-th node of GA. The essence of the similarity of the graph nodes is the 

fact that two graph nodes are similar, if their neighbouring nodes are similar. The 

greater value of zij the greater the similarity between the i-th node of GB and the  

j-th node of GA. We obtain structural similarity matrix S(GA,GB) between nodes of 

graphs GA and GB as follows: 

 2( , ) [ ] lim
B AA B ij n n k

k
S G G s Z

×

→+∞

= =       (5.15) 

Some computation aspects of calculation S(GA,GB) have been presented in 

(Blondel et al., 2004). We can write (5.14) more explicitly by using the  

matrix-to-vector operator that develops a matrix into a vector by taking its 

columns one by one. Therefore, we can write the equality (5.14) as follows: 

1

( )

( )

T T
k

k T T
k F

A B A B z
z

A B A B z
+

⊗ + ⊗

=

⊗ + ⊗

      (5.16) 

where "⊗" denotes the Kronecker product (also denoted tensorial, direct or 

categorial product). Unfortunately, iteration zk+1 does not always converge. 

Authors of the work (Melnik et al., 2002) showed that if we change the formula 

(5.16) for 1

( )

( )

T T
k

k T T
k F

A B A B z b
z

A B A B z b
+

⊗ + ⊗ +

=

⊗ + ⊗ +

, then formula (5.16) converges for b>0. 

Having matrix S(GA,GB), we can formulate and solve an optimal assignment 
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problem (using e.g. the Hungarian algorithm) to find the best allocation matrix 

[ ]
B Aij n nX x

×

= of nodes from graph describing GA, GB: 

1 1

( , ) max
B An n

S A B ij ij
i j

d G G s x
= =

= ⋅ →∑∑      (5.17) 

with constraints: 

1

1,    1,
Bn

ij A
i

x j n
=

≤ =∑         (5.18) 

1

1,    1,
An

ij B
j

x i n
=

≤ =∑         (5.19) 

{1,..., } {1,..., }
{0,1}

B A
ij

i n j n
x

∈ ∈

∀ ∀ ∈        (5.20) 

The dS(GA,GB) describes the value of structural similarity measure of GA and GB  

(Fig. 5.3). Let us note that we can easily adopt centrality measures from social 

networks to use them or their combinations instead sij (Bartosiak et al., 2011). 

To calculate non-structural (quantitative) similarity between GA and GB we 

should consider the similarity between values of node and arc functions (nodes and 

arcs quantitative similarity), (Tarapata, 2007b). To compute quantitative similarity of 

nodes we propose to create a vector 1( , ) , ...,A B LFG G V V=v  of matrices, where 

( )
B A

k ij n n
V v k

×

 =   , k=1,…,LF,  describing similarity matrix between nodes of GA and 

GB from the point of view of the k-th node’s function ( :
A

A n
k Gf N R→  for GA and 

:
B

B n
k Gf N R→  for GB) and ( ) ( ) ( )B A

ij k kv k f i f j= −  describes the "distance" between 

the i-th node of GB and the j-th node of GA  from the point of view of B
kf  and A

kf , 

respectively. We can apply a norm with parameter 1p ≥  as distance measure: 

1

, ,
1

( ) ( ) ( ) ( ) ( ) ( )

ppn
B A B A B A

k k k k k r k rp
r

f i f j f i f j f i f j
=

 
− = − = −  

 
∑                         (5.21) 

where , ( )A
k rf ⋅ , , ( )B

k rf ⋅  describe the r-th component of the vector being the value of A
kf  

and B
kf , respectively. 

Next, we compute for each k=1,…,LF normalized matrix * * ( )
B A

k ij n n
V v k

×

 =   , where 

* ( ) ( )ij ij k F
v k v k V= . This procedure guarantees that each * ( ) [0,1]ijv k ∈ . Finally, we 

compute the total quantitative similarity between the i-th node of GB and the j-th 

node of GA as follows: 

*

1,...,
1 1

( ),     1,  [0,1]
LF LF

ij k ij k k
k LF

k k

v v kλ λ λ

=

= =

= ⋅ = ∀ ∈∑ ∑     (5.22) 
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Fig. 5.3. Examples of weighted graphs with a single function described on the nodes (set of 
functions described on the arcs is empty) and their structural (S(GA,G)) and quantitative ( *

1 ( , )
A

V G G ) 

similarity matrices. Dark filled cells describe ones, which create optimal assignment of the nodes of 

GA to nodes of G∈{GB, GC, GD, GE} 

 

The dQN(GA,GB) nodes quantitative similarity measure of GA and GB we compute 

by solving the assignment problem (5.17)-(5.19) substituting ijv−  for sij (because of 

that the smaller value of ijv  the better) and dQN(GA,GB) for dS(GA,GB) in (5.17).  

An example of calculations similarity matrices between nodes of graphs and 

similarity measures dS and dQN between graphs are presented in Fig. 5.3 and in 

Table 5.1. Let us note that the best structural matched graph for GA is GB 

(dS(GA,GB)=1.423 is the maximal value among values of this measure for other 

graphs) but the best quantitative matched graph for GA is GC (dQN(GA,GC)=0 is  

a minimal value among of values of this measure for other graphs). The question 

is: which graph is the most similar to GA : GB or GC? A method for solving the 

problem and to answer the question is presented in chapter 5.2.3.4: we have to 

apply a multicriteria choice of the best matched graph to GA. 

We can obtain arcs quantitative similarity measure dQA(GA,GB) by analogy to 

dQN(GA,GB): we build a vector 1( , ) ,...,A B LHG G E E=e  of matrices, where 

[ ( )]
B Ak ij m mE e k

×

= , k=1,…,LH  (mA, mB – number of arcs in GA and GB) describing the 

similarity matrix between arcs of GA and GB from the point of view of the k-th arc 

function ( :
A

A n
k Gh A R→  for GA and :

B

B n
k Gh A R→  for GB), ( ) ( ) ( )B A

ij k k p
e k h i h j= − , 

next * ( ) ( )ij ij k F
e k e k E=  and *

1

( ),
LH

ij k ij
k

e e kµ

=

= ⋅∑  
1

1,
LH

k
k

µ

=

=∑  
1,...,

0k
k LH

µ

=

∀ ≥ . Substituting in 
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(5.17) ije−  for sij, dQA(GA,GB) for dS(GA,GB) and solving (5.17)-(5.19) we obtain 

dQA(GA,GB).  

 

Table 5.1. Values of similarity measures between GA and each of the four graphs from Fig. 5.3 

Graph G dS(GA,G) dQN(GA,G) 0.5dS(GA,G) - 0.5dQN(GA,G) 

GB 1.423 0.5 0.462 

GC 1.412 0 0.706 

GD 1.412 0.25 0.456 

GE 1.225 0.5 0.362 

 

Let us note that it is possible to determine a single quantitative similarity 

measure for GA and GB. To this end, we use transformation of graph ,G N A=  

into a temporary graph * * *,G N A=  as follows: *N N A= ∪ , * * *A N N⊂ ×  and  

 ( ) ( )
* *

,
( , ) ( , ) ( , ) ( , )

v N a A x N x N
v x a v a A x v a a v A

∈ ∈ ∈ ∈

∀ ∃ = ⇒ ∈ ∨ ∃ = ⇒ ∈  (5.23) 

If G was a weighted graph then in G* we attribute the arc and node functions 

from G to appropriate nodes of G* (that is to nodes and arcs from G). Using this 

procedure for GA and GB we obtain *
AG  and *

BG . Next, for *
AG  and *

BG  we can 

calculate a quantitative similarity measure * *( , )QN A Bd G G
 

of nodes. Example of 

constructing G* from G is presented in Fig. 5.4. 

 

 

 

Fig. 5.4. Transformation of G (left-hand side) into G
*
 (right-hand side) 

 

5.2.3.3. Epsilon-similarity of weighted graphs 

At this moment, we propose another view on the quantitative similarity 

between weighted graphs (Tarapata, 2007b). 
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Definition 5.1 

Let us two weighted graphs: 

, , { ( )} ,
A

A
A A A A n VWG G V E f n

∈

= = ∅  and , , { ( )} ,
B

B
B B B B n VWG G V E f n

∈

= = ∅  

be given and :A
Af V R→ , :B

Bf V R→ .  

We say that node Ax V∈  is (f,ε)-similar to node By V∈ , 0ε ≥ , if  

( ) [(1 ) ( );  (1 ) ( )]A B Bf x f y f yε ε∈ − ⋅ + ⋅  or ( ) [(1 ) ( );  (1 ) ( )]B A Af y f x f xε ε∈ − ⋅ + ⋅ . 

 

We can use the definition of (f,ε)-similarity of nodes to construct  

(f,ε)-similarity measure between graphs GA and GB. To this end we define the 

binary similarity matrix between nodes of GA and GB as follows: ( ) [ ( )]
B A

b b
ij n nV vε ε

×

=

and  ( ) 1b
ijv ε =  if ( ) [(1 ) ( );  (1 ) ( )]A B Bf j f i f iε ε∈ − ⋅ + ⋅  or  

( ) [(1 ) ( );  (1 ) ( )]B A Af i f j f jε ε∈ − ⋅ + ⋅ , ,Bi V∈ Aj V∈  and ( ) 0b
ijv ε =  otherwise. 

Next we compute *( ) ( ) ( )b b b
ij ij F

v v Vε ε ε= , and compute ( , )QN A Bd G Gε  solving the 

assignment problem (5.17)-(5.19) by substituting *( )b
ijv ε  for sij  and ( , )QN A Bd G Gε  for 

dS(GA,GB) in (5.17). This idea may be easily extended on a set of node functions.  

The idea of the (f,ε)-similarity is presented in Fig. 5.5. Weighted graphs GA 

and GB with a single function described on the nodes are defined in Fig. 5.3. We 

obtain, for example: 

 1,3( 1) 1bv ε = =

 
because (3) 1 [(1 1) (1);  (1 1) (1)]A B Bf f f= ∈ − ⋅ + ⋅  that is 

(3) 1 [0;  2 2]Af = ∈ ⋅ ;  

 3,4( 0.34) 1bv ε = =

 
because (3) 2 [(1 0.34) (4) 3;  (1 0.34) (4) 3]B A Af f f= ∈ − ⋅ = + ⋅ =  

that is = ∈ ⋅ ⋅(3) 2 [0.66 3;  1.34 3]Bf . 
 

 

Fig. 5.5. The idea of the (f,ε)-similarity between nodes of GA and GB. Binary matrices Vb(ε) for two 

values of ε are presented. Filled cells describe node-to-node assignment of GA to GB, which create an 
optimal assignment 
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5.2.3.4. Formulation of the multicriteria weighted graphs similarity problem 

(MWGSP) 

Let us accept 1 2{ , , ..., }MSG G G G=  as a set of weighted graphs defining certain 

objects. Moreover, we have a weighted graph P that defines a certain pattern 

object. The problem is to find such a graph Go from SG that is the most similar to P. 

We define this problem as a multicriteria weighted graphs similarity problem 

(MWGSP), which is a multicriteria optimization problem in the space SG with 

relation RD: 

( ), , DMWGSP SG F R=        (5.24) 

where: 

3:F SG R→ , ( ) ( )( , ), ( , ), ( , )S QN QAF G d P G d P G d P G=   (5.25) 

( , ) :  ( , ) ( , )

                            ( , ) ( , )

                            ( , ) ( , )

S S

D QN QN

QA QA

Y Z SG SG d P Y d P Z

R d P Y d P Z

d P Y d P Z

 ∈ × ≥ ∧

 
= ≤ ∧ 
 

≤ 

   (5.26) 

Domination relation RD (Pareto relation between elements of SG) gives 

possibilities to compare graphs from SG. Weighted graph Z is more similar to P 

than Y if structural similarity between P and Y is not smaller than between P and Z 

and, simultaneously, both quantitative similarities between P and Y are not greater 

than between P and Z. There are many methods for solving the problem (5.24) 

(Eschenauer et al., 1990): weighted sum (scalarization of set of objectives), 

hierarchical optimization (the idea is to formulate a sequence of scalar optimization 

problems with respect to the individual objective functions subject to bounds on 

previously computed optimal values), trade-off method (one objective is selected 

by the user and the other ones are considered as constraints with respect to the 

individual minima), method of distance functions in Lp-norm ( 1p ≥ ) and others. 

We propose to use the scalar function ( ) :H G SG R→  as a weighted sum of 

objectives: 

( ) ( ) ( )1 2 3

1 2 3 1 2 3

( , ) ( , ) ( , )

, , 0, 1

S QN QAH G d P G d P G d P Gα α α

α α α α α α

= ⋅ + ⋅ − + ⋅ −

≥ + + =

 (5.27) 

Taking into account (5.27) the problem of finding the most matched Go to 

pattern P can be formulated as follows: to determine such a oG SG∈ , that 

( ) max ( )o

G SG

H G H G
∈

= . In the last column of Table 5.1 the scalar function H(G) is 

defined as follows: 

1 2 3( ) ( , ) ( ( , )) ( ( , ))S QN QAH G d P G d P G d P Gα α α= ⋅ + ⋅ − + ⋅ −   (5.28) 
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where 1 2 0.5α α= = , 3 0,  AP Gα = = , { , , , }B C D ESG G G G G= . Let us note that the 

best matched graph to GA being the solution of MWGSP with the scalar function 

H(G) is GC (H(Go=GC)=0.706). 

Let us estimate computational complexity of the weighted graphs similarity. 

Let n=max{nA,nB}, m=max{mA,mB}. To compute structural similarity measure (5.17) 

we must first calculate matrix (5.15) and next solve the problem (5.17)-(5.20). 

Computation of matrix (5.15) takes a time O(n2.376) because in practice k<<n (using 

matrix multiplications algorithm given by Coppersmith and Winograd with an 

asymptotic complexity of O(n2.376), (Cormen, 1994)). Solving the problem  

(5.17)-(5.20) takes a time O(n3) using implementation of Hungarian algorithm given 

by Edmonds and Karp, so we obtain total complexity of these two steps O(n3). To 

compute nodes quantitative similarity measure dQN we must first compute matrix 

ij
n n

V v
×

 =    in time 2( )O LF n⋅  and then solve the modified problem  

(5.17)-(5.20) in time O(n3), so we obtain total complexity of these two steps 
2 3( )O LF n n⋅ + . For calculate arcs quantitative similarity measure dQA we obtain 

complexity by analogy like for dQN and we have 2 3( )O LH m m⋅ + . Finally, 

computational complexity of total graph measure (5.27) is equal 
2 3 2 3( )O LF n n LH m m⋅ + + ⋅ + . 

5.2.3.5. Application of weighted graphs similarity to pattern recognition of 

decision situations 

In the presented proposition the weighted graphs similarity approach to the 

identification of the decision situation is used. It consists of three stages: 

1. Building weighted graphs WGT(CS), WGD(CS) and WGT(PS), WGD(PS) 

representing decision situations: current (CS) and pattern (PS) for 

topographical conditions (WGT) and units (potential) deploying (WGD); 

2. Calculation of similarity measures between pairs: WGT(CS), WGT(PS) and 

WGD(CS), WGD(PS)  for each CSPS PDSS∈ ; 

3. Selecting the most similar PS to CS using calculated similarity measures. 

 

Stage 1 

The first stage is to build weighted graphs WGT and WGD as follows:  

{1,...,5}, , { ( )}
GT

T
GT GT k k

n N

WGT GT N A f n
∈

∈

= = , {1,...,4}, , { ( )}
GD

D
GD GD k k

n N

WGD GD N A f n
∈

∈

= =   

 

where G (GT or GD) – Berge’s graphs, ,G GG N A= , NG, AG – sets of graph nodes 

and arcs, { }, ' : , 'G GA n n n n N⊂ ∈ . Weighted graphs WGT and WGD describe 

decision situations (current CS and pattern PS).  Each node n of GT and GD 
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describes terrain cells (i,j)=n with non-zero values of characteristics defined as 

components of 5
ijSD  from (5.1) and 5,

{1,...,4}
( ) ,T k

k ij
k

f n SD
∈

∀ =  5,8
5 ( )T

ijf n SD= , 

5,4

{1,...,3}
( )D k

k ij
k

f n SD +

∈

∀ = , 5,8
4 ( )D

ijf n SD= . Two nodes , GDx y N∈  (for , GTx y N∈  by 

analogy) are linked by an arc, when cells represented by x and y are adjacent (more 

precisely: they are adjacent cells that take into account the direction of action, see 

Fig. 5.6). For example, the terrain can be divided into 15 cells (3 rows and 5 

columns, left-hand side, see Fig. 5.6). The units are located in cells (denoted by 

circles and Xs). Structural representation of deployment of units is defined by the 

graph GD. Let us note that similar representation can be used for topographical 

conditions (single graph for one of the topographical information layer: waters, 

forests, passability or single graph GT for all of this information, see Fig. 5.6,  

right-hand side). 

 

Stage 2 

Having weighted graphs WGD(CS) and WGD(PS) (WGT(CS) and WGT(PS)) 

representing the current CS and the pattern PS decision situations (for units 

deploying) we use the procedure described in chapter 5.2.3.2 to calculate the 

structural and quantitative similarity measures for both graphs. 

We obtain for WGD:  

dS(WGD(CS), WGD(PS))= ( , )D
Sd CS PS , dQN(WGD(CS), WGD(PS))= ( , )D

QNd CS PS   

and for WGT: 

dS(WGT(CS),WGT(PS))= ( , )T
Sd CS PS , dQN(WGT(CS),WGT(PS))= ( , )T

QNd CS PS . 

 

 

Fig. 5.6. Deployment of units and their structural (graph GD) representation (left-hand side) and 
terrain covering (growth) and its structural (GT) representation (right-hand side). Circles (O) and 

crosses (X) describe two types of units 

 

Stage 3 

We formulate problem (5.24), separately for WGT and WGD, where: 

SG:=PDSS, F(G):=FD(PS), ( , )Sd P G := ( , )D
Sd CS PS , ( , )QNd P G := ( , )D

QNd CS PS  for WGD 
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and F(G):=FT(PS), ( , )Sd P G := ( , )T
Sd CS PS , ( , )QNd P G := ( , )T

QNd CS PS  for WGT. Next, we 

define the scalar functions (5.27) to solve the problem (5.24) for WGD and WGT: 

1 2( ) ( , ) ( ( , ))D D
D S QNH d dα α⋅ = ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅       (5.29) 

and 

1 2( ) ( , ) ( ( , ))T T
T S QNH d dγ γ⋅ = ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅       (5.30) 

 

Having HD(PS) and HT(PS) we can combine these criteria (as in (5.27)) or set 

threshold values and select the most matched pattern situation to the current one. 

This process requires "rich" knowledge base of pattern situations in order to better 

learn of the MWGSP algorithm. 

 Concept of MWGSP can be also used to estimate real realization of course of 

action (Antkiewicz et al., 2009d): 

• we define formation of conflict side using network representation from (5.13); 

• taking into account (5.13) we define pattern formation PF of conflict side; the PF 

is predicted (or demanded) formation which should be achieved after actions; 

• after simulation of course of actions si (i=1,..., N) we obtain ASF(si) formation for 

each i=1,..., N; 

• we calculate structural ( , ( ))S id PF ASF s  and quantitative ( , ( ))QN id PF ASF s

similarity measures between PF and ASF(si) using procedure described in 

chapter 5.2.3.2; 

• we can solve MWGSP defined in chapter 5.2.3.4 to find the best *
is  course of 

action from the point of view of its formation similarity to demanded PF 

formation. 

5.2.3.6. Numerical example 

An example of using the approach presented in chapter 5.2.3.5 to find the 

most matched pattern decision situation to the current one is presented in Fig. 5.7 

and in Table 5.2. Results of calculations HD(PS) are presented for each 

1 8{ , ..., }CSPS PDSS PS PS∈ = . Only function ( ) 5,8
4 ( )D CS

ijf n SD=  ( ( )
4 ( )D PSf n  for pattern PS) 

is used from WGD to compute quantitative similarity of nodes (see chapter 5.2.3.2) 

because all units have the same type. Thus, vector v(WGD(CS),WGD(PS)) of 

matrices has one component 
( ) ( )1 | || |[ (1)]

GD PS GD CSij N NV v
×

= . Function ( )
4 ( )D CSf n  describes 

coordinates of node n (the left-lower cell has coordinates (1,1)). The norm from 

(5.21) has the form of: 

1 222

4 4 4, 4,2
1

( ) ( ) ( ) ( )D D D D
r rp

r

f i f j f i f j
=

=

 
− = −  

 
∑  and it describes the 

geometric distance between nodes i∈NGD(PS) and j∈NGD(CS). Let us note that for 

weights 1 20,  1α α= =  values in Table 5.2 (for the row PSi) describes ( , )D
QN id CS PS  
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and for 1 21,  0α α= =  describes ( , )D
S id CS PS . The best matched PS to CS is PS2 

(taking into account D
Sd  and D

QNd ).  

The process of optimal selection of weights can be organized as follows: we 

build a learning set {CSi,PDSSi}i=1,…,LS  and for different values of weights experts 

estimate whether, in their subjective opinion, CSi is similar to PS*
∈PDSSi 

determined from the procedure. The combination of weight values, which are 

indicated by majority of experts, is the optimal combination. 

Some other applications of the MWGSP problem are presented in chapter 6.3. 

 

 

Fig. 5.7. The current situation CS with graph GD(CS) and eight pattern situations PSi (i=1,…,8) with 
graphs GD(PSi) describing structure of units deployment. Patterns 1-5, 2-6, 3-7 and 4-8 have the 

same structure, but cells for patterns 5,..,8 have a greater size than for patterns 1,…,4 

 

Table 5.2. Values of the scalar function HD(PSi) combining structural (weight α1) and quantitative 

(weight α2) similarity measures between GD(CS) and GD(PSi) from Fig. 5.7. The best (maximal) 
values in the columns are denoted in bold 

Pattern Weights (α1 ; α2) 

PSi (0; 1) (0.33; 0.67) (0.5; 0.5) (0.67; 0.33) (1; 0) 

PS1 -0.094 0.283 0.463 0.800 1.527 

PS2 -0.370 0.283 0.593 0.870 1.504 

PS3 -0.478 0.157 0.360 0.726 1.254 

PS4 -0.233 0.176 0.467 0.827 1.527 

PS5 -0.474 0.120 0.461 0.824 1.527 

PS6 -0.706 0.032 0.378 0.761 1.504 

PS7 -0.63 0.070 0.279 0.631 1.254 

PS8 -0.508 0.047 0.415 0.793 1.527 
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5.3. Decision Automata for a March 

In chapter 5.2 elements of decision automata for an attack, which replaces the 

commander at the battalion level, have been described. In this chapter we present 

the decision automata for marching which execute two main processes (Tarapata, 

2007e): the march planning process and direct march control. The march planning 

process relating to the automata includes the determination of: march 

organization, paths for units and detailed march schedule for each unit in the 

column. The direct march control process contains such phases like command, 

reporting and reaction to fault situations during the march simulation. The 

automata is implemented in the ADA language and it represents a commander of 

battalion level (the lowest level of trainees is brigade level). It is a component of 

distributed interactive simulation system SBOTSS Zlocien for CAXes (Computer 

Assisted Exercises) (Najgebauer, 2004a; 2004b). Some of the applications are 

presented in chapter 6.1. 

5.3.1. The March Planning Process 

5.3.1.1. Description of the problem 

The march planning process relating to the automata contains the 

determination of such elements as: march organization (units order in the march 

column, count and stopping points), paths for units and detailed march schedule 

for each unit in the column. Algorithms, which carry out the decision planning 

process described below, are presented in chapter 5.3.3.  

The decision process for the march starts at the moment t, when the battalion 

id receives the march order SO(id, t) from a superior (brigade) unit. The structure 

of the SO(id, t) is as follows: 
 

( )0( , ) ( , ), ( , ), ( , )SSO id t   t id t  t id t  MD id t=     (5.31) 

where: SO(id, t) – superior order to march for battalion id; 0( , )t id t  – readiness time 

for the unit id; ( , )St id t  – starting time of the march for the unit id; ( , )MD id t  – 

detailed description of the march order. Definition of the ( )MD id  (we omit t) is as 

follows: 

( )
1,

( ) ( ), ( ), ( ), ( ) ( ), ( )p p p NIP
MD id S id D id RP id IP id in id it id

=

= =  (5.32) 

where: ( ), ( )S id D id – source and destination areas for id, respectively; RP(id) – the 

rest area for the id unit (after twenty-four-hours of marching), optional; IP(id) – 

vector of checkpoints for the id unit (march route must cross these points), inp(id) – 

the p-th checkpoint, 1 2( )pin id W W∈ ∪ , W1, W2 defined in chapter 2.3, in1(id)=PS(id) 
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is the starting point of the march (at this point the head of the marching column is 

formed) and it is required, other checkpoints are optional, itp(id) – time of 

achieving the p-th checkpoint (optional); NIP – number of checkpoints. After the id 

unit (battalion) receives the brigade commander’s order to march, the decision 

automata starts planning the realization of this task. Taking into account ( , )SO id t , 

for each unit id’ (of company level and equivalent) directly subordinate to id the 

march order, MDS(id’) is determined as follows: 

( )( ') ( '), ( '), ( '), ( '), ( '), ', ( '), ( ')MDS id S id D id PS id PD id RP id id S id D idµ=  (5.33) 

where: ( '), ( ')S id D id  – source and destination areas for id’, respectively, 

( ') ( )S id S id⊂ , ( ') ( )D id D id⊂ ; RP(id’) – rest area for the id’ unit (after twenty-four-

hours of marching), ( ') ( )RP id RP id⊂ , optional parameter; PS(id’) – starting point 

for the id’ unit, the same for all id’∈id and 1 1 2( ') ( )PS id in id W W= ∈ ∪ ; PD(id’) – 

ending point of the march for the id’ unit, the same for all id’∈id and 

1 2( ')PD id W W∈ ∪ ; ( ', , )id S Dµ  – the route for the unit id’ from the region S(id’)=S to 

region D(id’)=D, ( )
1, ( ( ', , ))

( ', , ) ( ', ), ( ', )
m LW id S D

id S D w id m v id m
µ

µ

=

= , ( ', )w id m  – the m-th 

node on the path for id’, 1 2( ', )w id m W W∈ ∪ , S,D⊂W1∪W2 and ( ',1)w id S∈ ,

( )( )', ( ', , )w id LW id S D Dµ ∈ ; LW(µ(id’,S,D)) – number of nodes (squares or 

crossroads) on the path µ(id’,S,D) for id’ unit; ( ', )v id m – velocity of the id’ unit on 

the arc starting in the m-th node. 

5.3.1.2. Models of movement plans 

The movement models define following movement plans: 

(a) from point (region) to point (region);  

(b) visiting selected points (regions); 

(c) omitting selected points (regions, obstacles); 

(d) inside or outside selected region; 

(e) off-roads only; 

(f) on-roads only; 

(g) combined on- and off-roads. 

They use following criterions for paths planning: time minimization, distance 

minimization, camouflage degree maximization. We define general problem for 

finding the best route which includes problems (a)-(g). We formulate problem for 

extreme path finding for id unit which realize movement plans (a)-(g) as follows:  

in the network { }1 2 2 1 2 3, ( ) ( ), ( ) , ,z zS G t t t l l lζ= Ψ ∪ Ψ ∪  (defined in chapter 

2.3) to find a such path ( )

*( , , ) , ,id S D M id S Dµ ∈ , for which 

 ( ) ( )

*

( , , ) ( , , )
( , , ) ( , , )

id S D M id S D
K id S D extr K id S D

µ

µ µ

∈

=     (5.34) 
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where: ( )( , , )K id S Dµ  – "cost" of the path 

( ( , , ) ( , ), ( , 1)K id S D l w id m w id mµ

( ), ,M id S D  – set of acceptable paths from the region 

( )( )( , ), ( , 1)l w id m w id m +  

It is important to note that path 

from Z1(t) and Z2(t) defined in chapter 2.3

road on the squares (if it is possible) and vice versa)

 

Fig. 5.8. The idea of hybrid path in 

 

If we want: 

• to minimize movement time, then in 

extr=min, where l1 function defined 

• to minimize geometrical length (distance) of the path then in 

( )( ) ( )( )2, ,l l=i i i i  and

• to maximize degree of camouflage for determined path then in 

( )( ) ( )( )3, ,l l=i i i i  and in 

Moreover, depending on kind of the movement plan (a)

( ), ,M id S D  of acceptable paths in the different way:

• for the case (a): 

( ) {, , ( , , ) ( , ), ( , ) : ,M id S D id S D w id m v id m S W D Wµ= = ⊂ ⊂

− Models and Algorithms for Knowledge-Based Decision Support and Simulation..

"cost" of the path µ(id,S,D), 

) ( )( )

( ( , , )) 1

1

( , , ) ( , ), ( , 1)
LW id S D

m

K id S D l w id m w id m
µ −

=

= +∑   

set of acceptable paths from the region S to the region 

( , ), ( , 1)  – arc ( )( , ), ( , 1)w id m w id m +  cost function

It is important to note that path ( , , )id S Dµ  may consist of sequences of nodes 

defined in chapter 2.3 (when we accept descending from the 

road on the squares (if it is possible) and vice versa), see Fig. 5.8. 

 

idea of hybrid path in the Zlocien system. The path consist of 5 (2+3) squares and 5 
parts of road 

ement time, then in (5.35) ( )( ) ((1, ,l l=i i i i

function defined by (2.15); 

to minimize geometrical length (distance) of the path then in 

and in (5.34) extr=min, where l2 function defined 

to maximize degree of camouflage for determined path then in 

and in (5.34) extr=max, where l3 function defined 

Moreover, depending on kind of the movement plan (a)-(g), we define the set 

of acceptable paths in the different way: 

( ), , ( , , ) ( , ), ( , ) : ,z zM id S D id S D w id m v id m S W D Wµ= = ⊂ ⊂

and Simulation... 165 

   (5.35) 

to the region D for id unit, 

cost function. 

may consist of sequences of nodes 

(when we accept descending from the 

 

 

system. The path consist of 5 (2+3) squares and 5 

)), ,i i i i , and in (5.34) 

to minimize geometrical length (distance) of the path then in (5.35) 

function defined by (2.20); 

to maximize degree of camouflage for determined path then in (5.35) 

function defined by (2.21). 

(g), we define the set 

}, , ( , , ) ( , ), ( , ) : ,z zM id S D id S D w id m v id m S W D W= = ⊂ ⊂   (5.36) 
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 but if we determine path from the point (node) to the point (node) then 1S =  

 and 1D = . It is important to emphasize, that for each {1, ..., ( ) 1}m LW µ∈ − , 

 ( )( )( , ) , ( , ), ( , 1)slowdv id m v id w id m w id m= + , where vslowd(•,•) described by (2.17). 

• for the case (b): 

( ) ( ){ }( ) {1,..., ( )}
, , ( , , ) ( , ), : ( , )

a P id m LW
M id S D id S D w id m w id m a

µ

µ

∈ ∈

= = ∀ ∃ =i   (5.37) 

 where P(id)⊂Wz describes subset of Wz which must belong to the path µ; 

• for the case (c): 

( ) ( ){ }( ) {1,..., ( )}
, , ( , , ) ( , ), : ~ ( , )

a NP id m LW
M id S D id S D w id m w id m a

µ

µ

∈ ∈

= = ∀ ∃ =i  (5.38) 

where NP(id)⊂Wz describes subset of Wz which path µ must omit; 

• for the case (d1): 

( ) ( ){ }{1,..., ( )}
, , ( , , ) ( , ), : ( , ) ( )

m LW
M id S D id S D w id m w id m OW id

µ

µ

∈

= = ∀ ∈i  (5.39) 

where OW(id)⊂Wz describes connected subset of Wz inside which the path µ 

must cross; 

• for the case (d2): 

( ) ( ){ }{1,..., ( )}
, , ( , , ) ( , ), : ( , ) ( )

m LW
M id S D id S D w id m w id m OZ id

µ

µ

∈

= = ∀ ∉i  (5.40) 

where OZ(id)⊂Wz describes subset of Wz outside which the path µ must cross; 

• for the case (e): 

 ( ) ( ){ }2
{1,..., ( )}

, , ( , , ) ( , ), : ( , )
m LW

M id S D id S D w id m w id m W
µ

µ

∈

= = ∀ ∈i   (5.41) 

• for the case (f): 

 ( ) ( ){ }1
{1,..., ( )}

, , ( , , ) ( , ), : ( , )
m LW

M id S D id S D w id m w id m W
µ

µ

∈

= = ∀ ∈i   (5.42) 

• for the case (g): the same like for the case (a). 

It is possible to define set ( ), ,M id S D  which is the common part of sets above 

defined. For example, we may have the following requirements for the path: it 

must cross from the point (square) to the selected region, it must omit selected 

points, it must cross inside selected region and it must be "off-roads". This situation 

may concern e.g. movement path for attacking company, which must move from 

the occupied region to the region occupied by the opposite unit, inside the zone of 

attack, omitting in this zone, for example, recognized minefields. Definition of the 

set ( ), ,M id S D  in this situation is following (we use (5.36), (5.38), (5.39) and (5.42)): 
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( ) ( ){

( )}

{1,..., ( )}

1

, , ( , , ) ( , ), : ( , ) ( )

                         ( , ) ( ) ( , ) 1 1

m LW
M id S D id S D w id m w id m OW id

w id m NP id w id m W S D

µ

µ

∈

= = ∀ ∈ ∧

∧ ∉ ∧ ∈ ∧ = ∧ ≥

i

 (5.43) 

5.3.1.3. March organization determination 

March organization includes the determination of such elements as: number 

of columns, order of units in march columns and number and place of stops.  

Number (#) of columns results from tactical rules and depends on the tactical 

level of the unit: for the battalion level #columns=1, for the brigade level 

#columns∈{1,2,3}; for the division level #columns∈{3,4,5}. In Fig. 5.9 each brigade 

has a single march column consisting of two battalions equipped with 4 companies 

each one; unit 111 is the head of the 1st brigade column (and simultaneously it is 

the head of the 1st battalion column); dc – distance in battalion column between 

companies, lc – company column length; db – distance in brigade column between 

battalions. Order of units in march column results from tactical rules as well 

(algorithm Units_Order_In_March_Column_Determ(id’), see Table 5.3).  

 

 

 

Fig. 5.9. Example of march organization in three columns 

 

Number of stops ( )stopsc id  is calculated as follows (algorithm 

Number_of_Stops_Determ(id’), see Table 5.3): 

( )

( )

( , ) ( , ) ( ) ( ) ( )
( ) max ,0

( ) ( )

D S rest avg path

stops

avg stop

t id t t id t t id v id L id
c id

v id t id s

  
− − ⋅ − 

 =  
⋅ + ∆    

 (5.44) 
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where: ( , )Dt id t  – demanded ending time of the march for the id unit, ( , )St id t  – 

starting time of the march for the id unit (as in (5.31)), ( , ) ( , ) 0D St id t t id t> ≥ , ( )restt id – 

duration time of the rest for the id unit, ( )avgv id  – average march velocity for the id 

unit, ( )pathL id – length of the path determined for the id unit (in km), ( )stopt id  – 

duration time of the stop for the id unit, s∆ – time interval between stops. In 

practice, values of parameters are as follows: ( )restt id ≈24h, [ ]( ) 30 40  km/havgv id ∈ ÷ , 

( ) 1 hstopt id ≈ , [ ]3, 4  hs∆ ∈ . 

Place of stops are fixed after path determination and algorithm 

Place_Of_Stops_Determ(id’) (see Table 5.3) takes into account ( )stopsc id  and the FCam 

function (see Table 2.1) to find optimal positions of stops. 

5.3.1.4. Detailed march schedule determination 

Detailed movement schedule for id’ unit is defined as follows (procedure 

Detailed_Schedule_Determ(id') in Table 5.3): 

0( ', ) , , ( ', , ), ( ', , )H id t S D id S D T id S Dµ=     (5.45) 

where: t0 – starting moment of the schedule realization; ( ', , )T id S D  – vector of 

moments of achieving nodes on the path, 
1, ( ( ', , ))

( ', , ) ( ', )
m LW id S D

T id S D t id m
µ=

= , 

( ', )t id m – moment of achieving the m-th node on the path, 

( )
1

0
1

( ', ), ( ', 1)
( ', )

( ', )

m

j

L w id j w id j
t id m t

v id j

−

=

+

= +∑     (5.46) 

and L(w(id’,j),w(id’,j+1)) describes the geometric distance between the j-th and the 

(j+1)-st nodes on the path, LW(µ(id',S,D) – number of nodes on the path for id’ unit. 

After determining MDS(id’) each unit id’ is subordinate to battalion id, the order is 

sent by automata to each of the id’ units. The idea of determining the march route 

for unit id is presented in Fig. 5.10. In this figure we have three checkpoints: P1=PS, 

P2 and P3=PD (the path for all units must follow these points). P1 is the starting 

point of the march (in this point the head of the march column consisting of three 

units is formed), P3 is the end point of the march (at this point the march column is 

resolved), P2 is the intermediate point of the march. The path between P1 and P3 is 

common for all units, however each unit has its own path from subarea of S to P1 

and from P3 to subarea of D. 

In general, the automata uses two types of categories of criteria for 

synchronous movement scheduling of the K object (unit) columns defined in 

chapter 4.2.1.1: (4.14) and (4.15). Taking into account that unit id is equivalent to 

the k-th column we can write the following equivalence between notations being 

used in chapters 4.2-4.3 and this chapter: 
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1( ), ( )
( , )r r

k

i k i k
v v k r

+
≡ , ( ) ( , )ri k w k r≡ , ( )1( ), ( )

( , ), ( , 1)r ri k i k
d L w k r w k r

+
≡ + , ( )( )p pr k in id= . 

One of the formulations of the optimization problem for movement 

synchronization scheduling of K objects used in the automata is presented in 

chapter 4.3.1 and methods for solving it in chapter 4.3.2. Theses methods are 

implemented in the automata with a common name March_Schedule_Determ(id') 

(see Table 5.3). One of the methods being used inside the previous one is 

Paths_Determ(id'). 

 

 

Fig. 5.10. An example of a march route (path) for three units id’∈id (filled squares) from the S source 
area to the D destination area (dots represent crossroads from a digital map) 

5.3.2. The Direct March Control 

 The direct march control process contains such phases as: command, 

reporting and reaction to fault situations during march simulation (Tarapata, 

2007e). Let us remember that the automata replaces the battalion commander and 

manages subordinate units (company or/and platoons and equivalent). 

 In the movement simulation we "see" the units column on the road twofold: 

(a) as occupying arcs (part of the roads) and nodes (crossroads) of the Z2 network 

(from equation (2.4)), (b) as a sequence of squares of the Z1 network (from (2.4)) by 

which the arc crosses. In case (a) we move the head and the tail of the column and 

we register arcs of Z2 in which the head and the tail are located with the degrees of 

crossing these arcs. In case (b) we locate the head and the tail of the column on the 

squares of the Z1 network and we move the "sequence" of these squares (from the 

head to the tail). 

Movement of the unit on the road (deployed in the column) is done by 

determining the sequence of nodes (crossroads) and arcs (part of the roads) of the 

Z2 network and next we execute the movement from crossroad/square to 
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crossroad/square (procedure Simulate_Unit_Movement(id’) in Table 5.3, see also 

chapter 6.1.3). 

5.3.2.1. Identifying fault situations during a march simulation and automata 

reactions 

The automata for marching on the battalion level reacts to fault situations 

during the march simulation presented below (procedure 

React_To_Fault_Situations(id’), see Table 5.3): 

1. Current velocity of a subordinate unit differs from the scheduled velocity; 
Reaction: (a) If a unit is the head of the column and it does not move at 

planned velocity then increase the velocity (in case of delay) or decrease it (in case 

of acceleration); (b) If a unit is not the head of the column then adapt the velocity to 

the velocity of the preceding unit.  

2. Reaching critical fuel level in one of the subordinate units; 
Reaction: Report to the automatic commander. Attempt refuelling at the next 

stop or refuel as soon as possible. 

3. Detection of an opponent unit; 
Reaction: If the opponent forces are overwhelming (opponent combat 

potential is greater than the threshold value) and distance between own and 

opponent units is relatively small then the unit is stopped, it goes to defensive 

position and reports to the commander. Otherwise, reports only to the 

commander. 

4. Detection of a minefield; 
Reaction: Stop and report to the commander. 

5. Loss of capability to execute march (destruction of part of the march route (e.g. 
bridge, river crossing), other cause of impassability); 

Reaction: (a) If the route is impassable due to destruction of a part of the 

march route then attempt to find a detour. Report to commander; (b) If other cause 

of impassability then take defensive position and report to the commander. 

6. Contamination of part of the march route or a subordinate unit; 
Reaction: Report to commander. If degree of contamination is low then run 

chemical defence and continue a march, otherwise try to exit from contaminated 

area. 

 Situations which require reporting to the superior of the battalion (procedure 

Report_To_Commander(id’) in Table 5.3):  

(a) achieving checkpoints, stop area or rest area; 
(b) slowing down velocity which causes delays; 
(c) encountering contamination; 
(d) encountering a minefield; 
(e) reaching 75% and 50% of standard fuel level; 
(f) capability loss of march execution (reporting the cause of capability loss); 
(g) detection of opponent units. 
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5.3.2.2. Velocity calculation 

The important problem during the simulation is to set the current velocity of 

the unit id because of the necessity for synchronous movement of many columns. 

The procedure of the velocity setting (procedure Adapt_March_Velocity(id’), see 

Table 5.3) inside the n-th square consists of two cases: (a) when the unit id is not 

engaged in combat in the n-th square; (b) when the unit id is engaged in combat in 

the n-th square. 

In case (a) the current velocity vcur(id,n) of the unit id in the n-th terrain square is 

calculated as follows: 

vcur(id,n)=min{ ( ),slowdv id n , vdec(id,n)}     (5.47) 

where: ( ),slowdv id n – maximal velocity of the unit id in the n-th square taking into 

account topographical conditions, ( ),slowdv id n  is equivalent to ( )( ), ,slowdv id n n  from 

(2.17),
 

vdec(id,n) – velocity resulting from the commander decision and equals 

v(id',j) in (5.46), id'≡id, j≡n. 

If the unit id is the head of column and it does not move with planned 

velocity vdec(id,n) then the velocity is increased (in case of delay) or decreased (in 

case of acceleration). If the unit id is not the head of the column then the velocity of 

the unit id is adapted to the velocity of the preceding unit. This movement method 

is known as follow-the-leader (e.g. in Fig. 5.9 the leader of the 1st brigade is unit 

111). 

In case (b) the current velocity vcur(id,n) of the unit id in the n-th square is calculated 

as follows: 

( ){ }= i( , ) min ( , ), , , , ( , )slowd
cur A B decv id n f v id U U dist v id n   (5.48) 

where: i i i i( , , , )f – function describing the velocity in the square dependent on 

vslowd(id, i ), potentials of the unit id of side A (UA) and B (UB) which are fighting and 

distance (dist) between fighting sides. 

5.3.2.3. Fuel consumption calculation 

Fuel consumption FC(id,veh,u) (procedure Fuel_Consumption_Determ(id’) in 

Table 5.3) on the u part of the path for the type of vehicle veh belonging to the id 

unit is calculated as follows: 

( )
( ,  ,  ) ( ) ( , ) ( , )

100

NFC veh
FC id veh u FLen u FCC u veh N id veh= ⋅ ⋅ ⋅  (5.49) 

where: FLen(u) describes the length of the u part of a path (see Table 2.2), 

FCC(u,veh) – fuel consumption coefficient for the u part of the path and for the 

vehicle type veh, NFC(veh) – normative average fuel consumption for the veh type 



5. Automatization and Simulation of Selected Decision Processes 

 

172 

of vehicle (per 100km), N(id,veh) – number of vehicles of veh type in the id unit. 

Fuel consumption coefficient FCC is calculated as follows: 

( ) ( )( ) ( )( ), 1.0 1.0FCC u veh MTC veh UC u= + ⋅ +    (5.50) 

where MTC(veh) describes the mechanical-tactical coefficient and UC(u) – 

utilization coefficient, veh∈K_Veh resulting from logistic calculations (see details in 

(Tarapata, 2007e)). 

5.3.3. Automata Implementation 

The automata is implemented in ADA language and it represents a part of an 

automatic commander on the battalion level (Najgebauer et al., 2007b; Tarapata, 

2007e). They realize their own tasks and pass on tasks to subordinate units. 

Simulation objects and their methods are managed by a dedicated simulation 

kernel (extension of ADA language). Object methods are divided into two sets:  

(1) non-simulation methods – designed in order to set and get values of attributes, 

specific calculations and database operations; (2) simulation methods – prepared 

for synchronous ("wait-for" methods) and asynchronous ("tell" methods) data 

sending. The simulation kernel is an object package based upon a permanent 

process (low level ADA language task). The simulation event is stored in one of the 

data structures: linked list (O(n) complexity) or effective BST tree (log2(n) 

complexity). Events are sorted in chronological order resulting from timestamps 

(Pierzchała, 2005). In Fig. 5.11 and Fig. 5.12 general diagrams of the simulation 

kernel and other important associated objects are shown. 

 

 

 

Fig. 5.11. Class diagrams of simulation kernel package (Najgebauer et al., 2005) 
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Fig. 5.12. Diagram of classes associated with the simulation kernel package (Najgebauer et al., 2005) 

 

Procedures implemented and used for decision planning and direct march 

control processes are presented in Table 5.3. 

Some simulation methods for movement of individual and group objects as 

well as the method of cooperative movement simulation are presented in chapter 

5.4. Moreover, a case study is presented in chapter 6.1. 

 

Table 5.3. Procedures implemented and used for decision planning and direct march control 
processes in the march automata 

Procedures implemented and used for each 

unit id’∈id for the decision planning process 

Procedures implemented and 

used for each unit id’∈id for the direct 

march control process 

Units_Order_In_March_Column_Determ(id’) 

Column_Length_Determ(id’) 

Number_of_Stops_Determ(id’) 

Place_Of_Stops_Determ(id’) 

Ending_Point_PD_Determ(id’) 

March_Schedule_Determ(id’) 

     Paths_Determ(id’) 

         Path_ S_To_PS_Determ(id’) 

         Common_Path_PS_To_PD(id’) 

         Path_ PD_To_D_Determ(id’) 

     Detailed_Schedule_Determ(id’) 

March_Simulation(id’) 

    Simulate_Unit_Movement(id’) 

    React_To_Fault_Situations(id’) 

    Fuel_Consumption_Determ(id’) 

    Adapt_March_Velocity(id’) 

    Report_To_Commander(id’) 
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5.4. Methods for Movement Simulation of Individual and Group Objects 

5.4.1. Method for Movement Simulation of Individual Objects 

Presented here are examples of movement simulation of military objects, 

which are carried out in the environment of a simulation object-oriented language 

MODSIM II (Modsim, 1995). Therefore, we consequently use the notation of this 

language. Each of the military objects may be considered as a separate MODSIM 

object: 

 

•  VehicleObj = OBJECT 

 nr   : INTEGER; (* object number *) 

 nr_nad  : INTEGER; (* number of superior unit *) 

 v_max : INETEGR; (* maximal speed *) 

 rodz  : BOOLEAN;  (* object type: TRUE - centipeded, 

        FALSE - vehicular) 

  ... other fields (see attributes vector of the military unit in  

    (Tarapata, 2000b; 2000d)) 
 ASK METHOD SetFields(IN nr, nr_nad, v_max: INTEGER;...); 

 ASK METHOD ObjInit(); 

END OBJECT; 

•  Wsp = RECORD 

 x, y, z : REAL; 

END RECORD; 

•  NodeObj=OBJECT(ImageObj, QueueObj) 

   Translation  : PointType; 

   Nr    : INTEGER; 

  ... other methods defining a node 

  END OBJECT; 

•  LinkObj=OBJECT(ImageObj); 

   Source, Destination : NodeObj; 

  ... other fields and methods defining the network  

    link (arc) 

END OBJECT; 

•  NetworkObj = OBJECT 

   NrOfNodes : INTEGER;  (* number of nodes *) 

 ASK METHOD GiveLink(IN node1, node2 : NodeObj): LinkObj; 

   ASK METHOD GiveNode(IN nr : INTEGER) : NodeObj; 

  ... other methods defining the network 

 END OBJECT; 

•  DynVehicleObj = OBJECT(VehicleObj, DynImageObj) 

 Course, Speed : REAL; (* inherited from MovingObj *) 

 MovingTo : BOOLEAN; (* inherited from  MovingObj *) 

 RotationSpeed : REAL; (* inherited from RotatingObj*) 

 RotatingTo : BOOLEAN; (* inherited from  RotatingObj*) 

 ScaleSpeed : REAL;  (* inherited from ScalingObj *) 

 ScalingTo : BOOLEAN; (* inherited from ScalingObj *) 
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 Motion : BOOLEAN;  (* inherited from DynamicObj*) 

 Translation : PointType; (* inherited from GraphicVObj*) 

  ... other fields inherited from superior objects 

 Path : ARRAY INTEGER OF  INTEGER; (* the field added by 

           this object *) 

 CurrNode : NodeObj;  

        

 ASK METHOD SetCourse(IN course : REAL); (*inherited  

           from MovingObj*) 

 ASK METHOD SetSpeed(IN speed : REAL); 

 TELL METHOD MoveTo(IN XDest, YDest : REAL); 

 TELL METHOD FollowPath(IN path : PoinArrayType);  

  ASK METHOD SetRotationSpeed(IN rotSpeed : REAL);  

        (*inherited from  

         RotatingObj*) 

 TELL METHOD RotateTo(IN theta : REAL);  

 ASK METHOD SetScaleSpeed(IN scaleSpeed : REAL);  

        (*inher. from ScalingObj*) 

 TELL METHOD ScaleTo(In xScale, yScale : REAL); 

 ASK METHOD StartMotion;     

      (*inher. from DynamicObj*) 

 ASK METHOD StopMotion; 

 ASK METHOD DynamicUpdate(IN currTime, elapsedTime : REAL); 

   ASK METHOD SetCurrNode(IN node : NodeObj);        

           (* methods added by this object*) 

   ASK METHOD SetPath(IN path : ARRAY INTEGER OF INTEGER); 

   ASK METHOD FindPath(IN nr_wpocz, nr_wkon: INTEGER; 

                   IN net : NetworkObj): ARRAY INTEGER  

            OF INTEGER; 

 TELL METHOD MoveVehicle(IN NodeS, NodeD : NodeObj);   

  ... other methods inherited from superior objects 

 ASK METHOD ObjInit(); 

END OBJECT;  

  

The VehicleObj object contains attributes of the military object, as 

information indispensable considering terrain traffic possibility by this object, etc.  

The Wsp record contains information about coordinates. NodeObj and 

LinkObj objects contain definitions of the network node and arc, respectively. 

NetworkObj object defines the network containing, among other things, 

information about network nodes (coordinates and the size of the node) and links. 

The DynVehicleObj object describes a military object containing, 

additionally, the possibility of moving and imaging, and inheriting both from 

VehicleObj and DynImageObj.  

The DynImageObj object (Modsim, 1995; Simgraphics, 1995) is the standard 

object of the SIMGRAPHICS II and describes the dynamic graphical object: 
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DynImageObj=OBJECT(ImageObj,MovingObj,RotatingObj,ScalingObj); 

  ... fields and methods (see (Simgraphics, 1995, pp. 192-194)) 
END OBJECT; 

 

This object may be drawn, moved, scaled and rotated with respect to 

simulation time. In this connection the DynVehicleObj object has the same 

properties because it inherited from the DynImageObj.  

The most important properties of the DynVehicleObj object are presented 

below: 

• inherited from MovingObj: 
FIELDS: 

* Course – actual course (direction) of the object in radians in the world 

 coordinate system; 

 * Speed – object speed in the world coordinate units per time unit; 

 * MovingTo – TRUE if object is actually moving;  

METHODS: 

* ASK METHOD SetCourse(...) – sets the direction in which the object 

 travels; 

 * ASK METHOD SetSpeed(...) – sets the speed of the object; 

* TELL METHOD MoveTo(...) –  moves the object to a specified point. 

 The method stops when the object arrives at its destination.  

* TELL METHOD FollowPath(...) – moves the object along a path 

 defined by an array of points. This method stops when the object 

 arrives at the last point of the array. To stop it from continuing we 

 should use Interrupt. 

•  inherited from RotatingObj: 
FIELDS: 

 * RotationSpeed – actual speed of rotation in radians per seconds; 

 * RotatingTo – TRUE if the object is actually rotating; 

METHODS: 

* ASK METHOD SetRotationSpeed(...) – sets the speed of the 

 rotation in radians per second. Negative values cause clockwise 

 rotation; 

* TELL METHOD RotateTo(...) – rotates the object by angle in 

 radians. Does not stop the execution of the program, but is carried out 

 synchronically with other simulation methods;  

•  inherited from ScalingObj : 
FIELDS: 

 * ScaleSpeed – actual speed of object scaling; 

 * ScalingTo – TRUE if object actually scaling; 

METHODS: 
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* ASK METHOD SetScaleSpeed(...) – sets the amount that is added to 

 an object scaling factor every unit of time. For example, with the scale of 

 1.0, the object becomes twice as big after 1 unit of time, 3 times as big 

 after  2 unit of time, etc.;  

* TELL METHOD ScaleTo(...) – synchronic scaling of the object to the 

 point defined as the method parameter with speed ScaleSpeed; 

•  inherited from DynamicObj (which was inherited from MovingObj, 

 RotatingObj, ScalingObj) : 
FIELDS: 

 * Motion – TRUE if object is currently moving; 

METHODS: 

* ASK METHOD StartMotion –  starts an object movement. After the 

 method is  invoked the DynamicUpdate method (described below) 

 which is called automatically from the runtime library; 

* ASK METHOD StopMotion –  stops an object from moving. 

 DynamicUpdate method no longer is invoked from the runtime  library; 

* ASK METHOD DynamicUpdate(IN currTime, elapsedTime : REAL) 

 – called periodically by the timing routine to update animation.  

 

Animation (moving) of the DynImageObj object type can be done in two 

ways. The first way is to set the object fields Course and Speed and invoke the 

StartMotion method of this object. It causes the object movement with fixed 

attributes. The second way is to use TELL or WAIT FOR instructions for the TELL 

method (e.g. MoveTo, ScaleTo, RotateTo), which causes time elapsing and 

synchronous invoking TELL methods, which are stopped after reaching  

the destination point. 

The fields and methods added by DynVehicleObj are the following:  

FIELDS: 

 * CurrNode ; 

 * Path ; 

METHODS: 

 * ASK METHOD SetCurrNode(...); 

 * ASK METHOD FindPath(...); 

 * TELL METHOD MoveVehicle(...). 

The CurrNode field contains information about the network node lastly 

achieved by the object. The Path field contains an array of node numbers 

belonging to the path for the current object.  

SetCurrNode(...) method is invoked when the object achieves the next 

node on its path. 
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FindPath(...) method sets the path for an object. The result is an array of 

node numbers belonging to the path from the starting node to the ending node for 

the current object.  

TELL method MoveVehicle(IN NodeS, NodeD : NodeObj) causes 

synchronous movement of the object from NodeS to NodeD. This is the most 

important method from the point of view of movement simulation. Possible code 

of it is presented in Example 5.1. 

Example 5.1 

TELL METHOD MoveVehicle (IN NodeS, NodeD : NodeObj); 

   VAR 

 link   : LinkObj; 

 NetWindow : NetworkObj; 

 i    : INTEGER; 

     xd,xs,yd,ys  : REAL; 

     exit   : BOOLEAN; 

 

BEGIN 

1 ASK SELF TO DisplayAt(ASK NodeS Translation.x,  

      ASK NodeS Translation.y); 

2   WHILE (i < > HIGH(Path)+1) AND (NOT exit) 

3     INC(i); 

4        IF  i < HIGH(Path) 

5   link := ASK NetWindow TO GiveLink( 

          ASK NetWindow TO GiveNode(ASK SELF  Path[i]),   

   ASK NetWindow TO GiveNode(ASK SELF  Path[i+1])); 

6          IF link <> NILOBJ 

            { object moving } 

7             NodeD := ASK link Destination; 

8             NodeS := ASK link Source; 

9            xs:=ASK NodeS Translation.x; 

10            ys:=ASK NodeS Translation.y; 

11            xd:=ASK NodeD Translation.x; 

12            yd:=ASK NodeD Translation.y; 

13           ASK SELF TO SetRotationSpeed(RotationSpeed); 

14            WAIT FOR SELF TO RotateTo(ATAN2(ys-yd,xs-xd)+pi); 

15            ON INTERRUPT 

16               IF SELF<>NILOBJ 

17                  DISPOSE(SELF);  

18     END IF; 

19            exit:=TRUE;                                                                                                                  

20            END WAIT;  

21     ASK SELF TO SetSpeed(Speed);          

22            WAIT FOR SELF TO MoveTo(xd, yd); 

23            ON INTERRUPT 

24              IF SELF<>NILOBJ 
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25                 DISPOSE(SELF);  

26              END IF; 

27              exit:=TRUE; 

28            END WAIT; 

29        END IF; 

30      END IF; 

31   END WHILE; 

END METHOD; 

 

In line 14 the rotation with a fixed angle is done. In line 21 the object speed on 

the arc from NodeS to NodeD is set. This speed may be known by solving the 

problem described in chapter 5.3.2.2. Invoking of the method to start  

a synchronous object movement to the specified point (node) is presented in line 

22. Independently of this, objects may be moved by means of the StartMotion 

method (see description earlier presented). 

The full invoking of an object movement may resemble that in Example 5.2. 

Example 5.2 

  .  

  . 

  . 

  VAR  

 vehicle   : DynVehicleObj; 

 NetWindow  : NetworkObj; 

 path   : ARRAY INTEGER OF INTEGER; 

 

BEGIN 

NEW(vehicle); 

 . 

 . 

 . 

path:=ASK vehicle TO  

   FindPath(NrOfStartingNode,NrOfEndingNode,NetWindow); 

ASK vehicle TO SetPath(path); 

nodeS:= ASK NetWindow TO GiveNode(NrOfStartingNode) ; 

nodeD:= ASK NetWindow TO GiveNode(NrOfEndingNode) ; 

TELL vehicle TO MoveVehicle(nodeS, nodeD); 

StartSimulation(); 

  . 

  . 

  . 

StopSimulation(); 

END METHOD; 
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5.4.2. Method for Movement Simulation of Group Objects 

A method of movement simulation for grouped objects is strictly related to 

the movement of individual objects. An example of a grouped object is a column 

(convoy) of individual objects. In this case, movement of these objects may 

resemble that in Example 5.3. 

Example 5.3 

  .  

  . 

  . 

  VAR  

 VehicleColumn  : ARRAY INTEGER, INTEGER OF VehicleObj; 

 ColumnsNumbers, 

 HowManyInColumn : INTEGER; 

 delayTime  : REAL; 

 

BEGIN 

 NEW(VehicleColumn,1..ColumnsNumbers,1..HowManyInColumn); 

 FOR i:=1 TO ColumnsNumbers 

  FOR j:=1 TO HowManyInColumn 

      NEW(VehicleColumn[i,j]); 

        path:=ASK vehicle TO FindPath(NrOfStartingNode+i, 

           NrOfEndingNode+j,NetWindow); 

      ASK VehicleColumn[i,j] TO SetPath(path); 

        nodeS:=ASK NetWindow TO GiveNode(NrOfStartingNode+i); 

      nodeD:= ASK NetWindow TO GiveNode(NrOfEndingNode+j); 

       TELL VehicleColumn[i,j] TO MoveVehicle(nodeS,nodeD) 

    IN delayTime; 

  END FOR; 

 END FOR; 

    StartSimulation(); 

  . 

  . 

  . 

 StopSimulation(); 

END METHOD; 

 

Using the instruction "TELL VehicleColumn[i,j] TO 

MoveVehicle(nodeS,nodeD) IN delayTime" causes that particular object of 

the column to follow the previous object (that is second behind the first, third 

behind the second, etc.) with a delay equal to delayTime. The value of this delay 

may be changed and then we can use the StartMotion() and DynamicUpdate() 

methods to dynamically change the path for each object. 
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5.4.3. Method for Cooperating Objects Movement Simulation and 

Management 

To plan and control K units movement during simulation described in 

chapters 5.3.1 and 5.3.2 the Movement Synchronization Manager (MSM) has been 

proposed (Tarapata, 2007e; 2010b) and its idea is presented in Fig. 5.13. 

 

 

 

Fig. 5.13. The idea of the Movement Synchronization Manager 

 

The first step (before simulation) is to run the Movement Planning Manager 

(MPM) which plans the movement of K objects by solving the optimization 

problem defined in chapter 5.3.1 (depending on user preferences). The MSM is 

started when the unit movement simulation starts. It keeps information about 

group (arrangement) pattern (GP) of K monitored units, type of distance measure 

(TDM) between the current group and group pattern, and acceptable value of distance 

(AVD). When the simulation starts the MSM is informed about each change of 

location of the monitored units and then the procedure From-Pattern Distance 

Calculator is executed. This procedure calculates the distance from GP taking into 

account the defined distance measure TDM, AVD and current locations of K units 

being monitored. Next, the procedure Movement Plan Modification Decision-Maker is 
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executed. If a calculated "distance" is greater than the acceptable value of the AVD 

"distance" and communication between the commanding unit and monitored units 

exists (we simulate a commander, which sees or knows about departures from the 

plan and decides to synchronize movement of units subordinate to him using the 

communication network) then the Movement Planning Manager (MPM) starts to 

search for a new schedule for the K units. 

Note that the group pattern units (GP) have been defined twofold: (1) using 

the geographical (terrain) distance; (2) using time. The definition of the time group 

pattern is presented in chapter 4.2.1.2 as the MSST problem (more precisely: as 

instances of the ( )p kτ  time). The definition of the terrain distance group pattern is 

presented in chapter 4.2.1.3 as the MSSD problem. 

5.5. Summary 

The models and methods described in the chapter are used in a real 

simulation support system for military operational training (Antkiewicz et al., 

2011b; Najgebauer et al., 2007b) and/or can be used in Computer Generated Forces 

systems. The presented methods and their implementations are very promising in 

context of Computer Assisted Exercises management and effectiveness. By using, for 

example, a decision automata at the battalion level, we can save a lot of time and 

decrease the number of training participants, so even very complex exercises can 

be organized and carried out by analyzing and go through different scenarios of 

military conflicts.  

There are some conclusions related to the presented decision automata. The 

presented multicriteria weighted graph similarity problem (MWGSP) combines 

well-known structural and rarely considered non-structural (quantitative) 

similarity between graphs as models of some objects. The approach to structural 

similarity between graph vertices adopted from (Blondel et al., 2004) can be 

improved (Melnik et al., 2002; Senellart & Blondel, 2003) because of the definition 

of the similarity matrix (5.15) is still not totally satisfactory (e.g. it is not always 

diagonally dominant for self-similarity). Different types of similarities should be 

compared with graph vertices similarity. Moreover, different types of methods for 

solving multicriteria problems (Eschenauer et al., 1990) should be checked for 

solving MWGSP. Let us note that we can easily adopt centrality measures from 

social networks to use them or their combinations instead sij in (5.17) (Bartosiak et 

al., 2011). 

One of the aspects of automatization of the decision processes – movement 

planning, synchronization and simulation is essential not only in CGF systems. 

Simulation systems for military trainings should have modules for management 

(planning, synchronization) multi-objects movement. The quality of this 
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management has an effect on accuracy, effectiveness and other characteristics of 

simulated battlefield systems. In general, modelling, optimization and simulation 

of multi-convoy redeployment (for simultaneous movement of many columns) are 

very complicated processes. Complexity of these processes depends on the 

following conditions: number of convoys (the greater the number of convoys the 

more complicated the scheduling of redeployment is); number of objects in each 

convoy (the longer the convoy the more complicated the scheduling of 

redeployment is); Have convoys been redeployed simultaneously? Can convoys be 

destroyed during redeployment? Can the terrain-based network be destroyed 

during redeployment? Have convoys been redeployed through disjoint routes? 

Have convoys achieved selected positions (nodes) at a fixed time? Do convoys 

have to start at the same time? Have convoys determined any action strips for 

moving? Can convoys be joined and separated during redeployment? Do convoys 

have to cross through fixed nodes?, etc. Some of these aspects are considered in 

chapter 5.3.1 and in the papers: (Beautement et al., 2006; Benton et al., 1995; 

Cassandras et al., 1995; Gelenbe et al., 2004; Karr et al., 1995; Kreitzberg et al., 1990; 

Lee & Fishwick, 1995; Lee, 1996; Logan & Sloman, 1997; Logan, 1997; Longtin & 

Megherbi, 1995; Mohn, 1994; Pai & Reissell, 1994; Sahin et al., 2008; 

Schrijver & Seymour, 1992; Sun et al., 2008; Rajput & Karr, 1994; Tarapata, 1998; 

1999b; 2000f; 2001; 2003a; 2004a; 2005a; 2005b; 2007e; 2010b; 2011b; Tuft et al., 2006; 

Wang, 2006; Wellman et al., 1995; Zafar et al., 2006). 

A very important problem, which deals with automatization of decision 

processes, is the calibration of simulation models of complex processes 

(Antkiewicz et al., 2006; Dockery & Woodcock, 1993; Hofmann, 2005). It enables the 

tuning of these models. This process has an influence on one of the most important 

features of simulation models as is adequacy. 

Some additional applications of presented methods are described in  

chapter 6. 

 

 

 

 

 

 

 

 

 

 

 

 



6. Selected Applications in Real Systems 

 

In this chapter some applications in real systems of presented models and 

algorithms are described. In chapter 6.1 an application and specialization of 

movement planning and simulation models and algorithms in real simulation 

systems Zlocien and MSCombat are presented. Chapter 6.2 contains a description of 

knowledge-based pattern recognition tools to support mission planning and 

simulation as an example of tools, which use models and algorithms presented in 

chapter 5.2. In chapter 6.3 we described applications in security and crisis 

management systems. 

6.1. Movement Planning and Simulation in the Zlocien and MSCombat 

Systems 

6.1.1. Simulation Based Operational Training Support System (SBOTSS) 

Zlocien and MSCombat: a Short Overview 

The stochastic simulator being considered is the Simulation Based Operational 

Training Support System (SBOTSS) – Zlocien (Antkiewicz et al., 2008e; 2009b; 2010f; 

Najgebauer et al., 2004a; 2007b; 2008b; Zlocien, 2002) which has been built at the 

Cybernetics Faculty of the Military University of Technology in Warsaw (Poland) 

and the author of this work is a member of the team, which has built the system. 
 

Table 6.1. Description of the Simulation Based Operational Training Support System (SBOTSS) - Zlocien  

Feature Description 

Domain Land operations, corps-division-brigade levels. Supported by detailed 
logistics and integrated intelligence operations, air support, EW. 

Span ADRG digitized maps and VPF terrain data permit the model to be used 
worldwide. The Terrain Rectangle Model (TRM) and Road_and_Railway 
Net Model (R&RNM) can be used to build terrain files to support the 
Zlocien model. 

Environment Rectangle-based terrain aggregates regional terrain and environmental 
characteristics: traffic-ability, elevation, vegetation, chemical 

contamination, and weather – granularity is 200m×200m.  Railways and 
roads are mapped via the independent Road_and_Railway Net Model, 
which is complementary to the Terrain Rectangle Model. Specific terrain 
or engineering objects are modelled separately and can be located on the 
maps transformed by terrain models – TRM and R&RNM. 

Software Combat simulator, After Action Review (AAR) procedures, Calibrator, 
Set of DBs (operational, terrain, scenario), Scenario Editor, Portal SBOTSS 
Zlocien, Reporter AAR, Visualization Server, ADatP3 Editor. 
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The SBOTSS Zlocien has been put into practice at the War Games and Simulation 

Centre of the National Defence University in Warsaw. This system has been used 

during Computer Assisted Exercises (CAXes). The Zlocien is an integrated, 

interactive, multi-sided land, analysis and training support model (with logistics, 

engineering, electronic warfare and intelligence functions), which realizes 

stochastic ground-combat attrition. The system is a federation, High Level 

Architecture (HLA) compliant (Kuhl et al., 1999), cooperating with C3 systems 

(Command, Control and Communication, C3) and heterogeneous platform (Sun 

Solaris, Windows NT). The detail description of the Zlocien system is presented in 

Table 6.1. The TRM is equivalent to the Z1 network from (2.2) and the R&RNM – to 

the Z2 network from (2.4). 

The Modelling and Simulation of Combat (MSCombat) system has been also built 

at the Cybernetics Faculty of the Military University of Technology in Warsaw. The 

basic features of the environment are as follows (Najgebauer et al., 1999b): the 

conflict scenario preparing, mission formulating for two sides, support of decision 

making process on the division level, simulation of decision making in the lower 

level, simulation of combat actions (combat units manoeuvre battle simulation), 

communication simulation, realization of external tasks in the interactive mode, 

commander interference with game during the simulation process, evaluation of 

decisions made as a result of data collected which are connected with two fighting 

sides moves and effects of these moves. The MSCombat is realized on the basis of 

MODSIM III and SIMOBJECT language. The hardware platform is heterogeneous, 

so simulation can be executed on PC Pentium and Risc platforms. The RTI API 

enables a co-operation of these platforms. The co-operation RTI API specification 

environment with MODSIM is possible thanks to special HLA/MODSIM interface. 

The General Algebraic Modelling System (GAMS) supplies methods of optimisation 

problems solving and is called from the simulation environment. 

6.1.2. Models and Algorithms for Movement Planning 

Algorithms of movement planning in the Zlocien system allow us to 

determine movement plans defined in chapter 5.3.1.2. The algorithms take into 

account three types of criteria defined there: time (l1), distance (l2) and degree of 

camouflage (l3) (or decamouflage). We can find single-criterion paths or 

multicriteria (2- or 3-criteria) paths taking into account the metacriterion function 

approach described in chapter 3.3.4.3 with the arc metafunction (3.49). 

 To find paths for units, modified shortest path algorithms (SPA) such as 

Dijkstra’s, A*, geometric SPA are used in SBOTSS Zlocien (Tarapata, 2004a; 2011b): 

•  (A) Dijkstra's for finding shortest paths using binary heaps (with complexity  

O(m log2 n), where m – number of graph edges (arcs), n – number of graph 

nodes); we can also use faster implementations of the Dijkstra's algorithm, e.g. 
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using 4-ary heaps (with complexity 

effective for the special structure of the graph (if the graph is 

r-ary heap is very effective to represent priority queue in the Dijkstra's or A* 

algorithm (Cherkassky 

 

Fig. 6.1. Computational complexity of 
heaps: binary (h2), 4-ary (h4), Fibonacci's (hF), binomial (hb) and red

part of terrains used in 

 

•  (B) A* for finding the 

the case of grid graphs this algorithm converges faster (in 

than the Dijkstra’s algorithm

node x’ for the next iteration is based on

( )’ ’ min ( ) ( ) :  is not a checked nodeg x h x g x h x x+ = +

while, in the Dijkstra’s algorithm:

   
( )’ min ( ) :  is not a checked nodeg x g x x=

where: g(x) – length of the shortest path from source node 

h(x) – estimation of the 

t. It is proved (Hart et al

greater than the real length of the shortest path from node 

then A* gives the optimal solution (for 

algorithm); 

                                        
1 Graph G is r-regular if each of its nodes 
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ary heaps (with complexity O(m log4 n), see Fig. 6.1), whi

effective for the special structure of the graph (if the graph is 

ary heap is very effective to represent priority queue in the Dijkstra's or A* 

(Cherkassky et al., 1996; Tarjan, 1983)); 

. Computational complexity of A* (A*) and the Dijkstra's algorithms implemented with 
ary (h4), Fibonacci's (hF), binomial (hb) and red-black tree (trb) for 

part of terrains used in the Zlocien system with four neighbours for each square

the shortest paths using heuristics (Hart 

case of grid graphs this algorithm converges faster (in the 

algorithm. In the A* algorithm the criterion for cho

for the next iteration is based on the function: 

( ) {’ ’ min ( ) ( ) :  is not a checked nodeg x h x g x h x x+ = +

Dijkstra’s algorithm: 

{ }’ min ( ) :  is not a checked nodeg x g x x=   

length of the shortest path from source node 

the length of the shortest path from node x

et al., 1968) that, if the value of the heuristic 

real length of the shortest path from node x to target node 

optimal solution (for h(x)=0 we have 

                                                 
regular if each of its nodes is adjacent to r nodes. 
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effective for the special structure of the graph (if the graph is r-regular1 then  

ary heap is very effective to represent priority queue in the Dijkstra's or A* 
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length of the shortest path from source node s to node x;  

x to target node 

heuristic h(x) is no 

to target node t, 

=0 we have the Dijkstra’s 
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• (C) for determining the shortest geometric paths (Mitchell, 1999). In the Zlocien 

system this algorithm supplements two of the above presented algorithms (we 

obtain the Hybrid Shortest Path (HSP) algorithm) and it is used in the case when 

the size of the network Sz is large (the default is 10 000 nodes, but it is  

a parameter set in the so-called calibrator of the simulation system (Antkiewicz 

et al., 2006)). 

  

 The idea of the hybrid (HSP) algorithm is described in Fig. 6.2. First we run 

HSP (C) to determine squares belonging to the segment linking the source square 

with the target square and next the condition whether all of these squares are 

passable is checked (starting from the source square). If all of the squares 

belonging to this segment are passable then the path has been determined. 

Otherwise, the hybrid algorithm runs one of the algorithms (A) or (B) which start 

from the last passable square on the segment (or from the one square before the 

last passable, or from the two squares before the last passable, etc.) and determine 

the shortest path to the target square. If a path exists then it is joined to the part of 

the path determined using the HSP algorithm (C), otherwise we use (A) or (B) 

algorithms from the source to the target. 

 

 

Fig. 6.2. The idea of the hybrid algorithm (HSP) for the shortest paths in the Zlocien system 

 

Modifications of mentioned algorithms deal with the following details: 

• paths determining in different configurations: from point (region) to point 

(region), visiting selected points (regions), omitting selected points (regions, 

obstacles), inside or outside selected region, off-roads only, on-roads only, 

combined on- and off-roads and others to find different types of movement 

plans defined in chapter 5.3.1.2; 



6. Selected Applications in Real Systems 

 

188 

• if we do not set region inside where we want to find the path then the 

algorithm itself iteratively determines the rectangular region which is based on 

the line linking source and target points (nodes) of movement, in order to 

minimize computational time; 

• if we want to find the on-road path only, and there are no nodes of the road 

network (Z2) inside the intermediate squares, then the algorithm may 

optionally find crossroads (nodes of the road network) that are nearest to 

squares inside which the path must cross. 

In Table 6.2 the headings of the procedures for finding paths in networks Z1 

and Sz  in the Zlocien system are presented. 

 

Table 6.2. The headings of the procedures for finding paths in the networks Z1 (left hand side) and 
Sz (right hand side) 

Procedures for finding paths in Z1 network Procedures for finding paths in Sz network 
procedure Determine_Path_On_Squares 
  (in Unit_Id, 
   in Inside_Region, 
   in Region_To_Avoid, 
   in Region_From,  
   in Region_To,   
   in Criterion,   
   in Whether_Avoid_Occupied,  
   out Path); 

procedure Determine_Path_On_Roads 
  (in Unit_Id, 
   in Inside_Region,   
   in Region_To_Avoid, 
   in Across_Region,  
   in Criterion, 
   in Whether_Search_For_Route_Nodes,   
   out Path); 

 

In the MSCombat system the first implementation of the SGDP algorithm from 

chapter 3.4.3.1 for finding K>1 disjoint paths has been tested. 

6.1.3. Models and Algorithms for Movement Simulation 

Movement simulation of the units is realized in both terrain models Z1 and 

Z2. However, in each of these models we "see" the units during movement in 

different ways. We accept the following assumptions and definitions: 

1. Small square and big square: small square is the square of the Z1 network; big 

square is an aggregated set of small squares (e.g. for the unit at company level 

the big square is the square with 4x4 small squares); 

2. Possible deployment of the units: 

• inside a small square (e.g. reconnaissance patrol on a single vehicle); 

• inside a big square (unit at company level may occupy 4x4 small squares); 

• on the road in a column (based on arcs of Z2). In this case we "see" the unit 

on the road twofold: (1) as occupying arcs (part of the roads)  

and nodes (crossroads) of the Z2 network, (2) as a sequence of squares of the 

Z1 network through which the arc crosses. In this case we use functions 
2

1 2 1: 2WFW OnW W →  and 2 1 2 1:FW OnW W W→

 
from Table 2.1 and 

Table 2.2; 
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3. Inside the big square the unit is evenly deployed taking into account passable 

small squares only (in special cases we omit this assumption). 

 

Movement of the unit, which is deployed in the big square is being done by 

determining the sequence of small squares, which create the path for a selected 

(e.g. lower left) small square of the big square (using the algorithm presented in the 

previous section) and next we realize the movement from square to square. In such 

a case we move the big square with the small square granulation (see Fig. 6.3). 

 

 

Fig. 6.3. The idea of unit movement on the squares of network Z1 

  

 In Fig. 6.3 the big square in which the unit is deployed has 4x4 small squares. 

The continuous line describes current deployment of the unit, the dashed line – the 

new location (after movement with the small square in the south-west direction). 

Dots inside the squares describes that there is some part of the unit. The arrow 

from the left side of the big square describes the direction of movement. After the 

movement the unit has been cumulated inside the 13 small squares because 3 

lower left squares are not passable (because of the lake). Movement across the 

"bottleneck" of the terrain (e.g. minefields crossing, bridge crossing) are realized 

similarly (using the accumulation of the unit inside small squares). 

Movement of the unit on the road (deployed in the column) is done by 

determining the sequence of nodes (crossroads) and arcs (part of the roads) of the 

Z2 network using the algorithm presented in the previous section and next we 

realize the movement from crossroad to crossroad. As it has been written, we "see" 

the unit on the road twofold: (1) as occupying arcs (part of the roads) and nodes 

(crossroads) of the Z2 network, (2) as sequence of squares of the Z1 network by 

which the arc crosses. In the case of (1) we move the head and the tail of the 

column and we register arcs of the Z2 on which the head and the tail are located 
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with degrees of crossing these arcs. In the case of (2) we locate the head and the tail 

of the column on small squares and we move the sequence of small squares (from 

the head to the tail), like in Fig. 6.2. 

In both models of movement the unit can move to the next square of its path 

if the following criterions are satisfied: 

• square is topographically passable; 

• square is tactically passable (lack of minefields, lack of an enemy unit (unit can 

occupy a square of the enemy unit, if and only, if the enemy unit is destroyed), 

number of own units in the square are no greater than a critical value 

(default=5)). 

The movement can be also interrupted, because of: the lack of fuel, destroying the 

unit, commander decision, simulation termination, etc. (see description of fault 

situations in chapter 5.3.2.1). 

The very important problem of setting the current velocity of the unit id 

during movement simulation is described in chapter 5.3.2.2. 

For movement simulation of units we use simulation procedures similar to 

these, which have been described in chapter 5.4. 

6.1.4. Practical Example 

In this chapter a practical example of march planning and simulation in the 

Zlocien system using automata for a march (see chapter 5.3) is presented. In Fig. 6.4 

an initial tactical situation is shown. 

 

 

 

Fig. 6.4. Initial tactical situation, 4:00am: two mechanized brigades of the BLUE conflict side  
(121 BZ and 123 BZ) receive an order to march 
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In the example being considered, 2 mechanized brigades (121 BZ and 123 BZ: each 

of the brigades consists of 4 mechanized battalions × 4 mechanized companies 

each) of the BLUE side receive the order to march. In the superior order (from 

(5.31)): 

• destination area for 121 BZ and 123 BZ is set about 30km to the north of the 

northern edge of the location area of the RED conflict side; 

• distance from the source area S to the destination D is equal to about 110km; 

• 5 checkpoints are set. 

 

 

    
(a)           (b) 

Fig. 6.5. Location of the 121 BZ (a) and 123 BZ (b) on the road, 5:50am 

 

In Fig. 6.5 the locations of 121 BZ and 123 BZ, respectively, after nearly 2 

hours of marching are presented. 

Initial redeployment of the BLUE side is presented in Fig. 6.6a. 121 BZ is 

redeployed on the northern-east of the BLUE force redeployment area. 123 BZ is 

redeployed south of 121 BZ. In Fig. 6.6b location of 121 BZ and 123 BZ at 5.50am is 

shown. 

In Fig. 6.7 the fuel level percentage regarding the starting level (4 825 litres) is 

presented for selected unit (12111 kz (belonging to 1211 bz from 121 BZ) consisting 

of 13 wheeled armoured "Rosomak" carriers) during the 110 km march, from 

4:00am to 7:30am. Fuel calculation during a march simulation has been done using 

formula (5.49). 

In Table 6.3 the average velocities between selected march checkpoints 

(descriptions of S, D, PS, PD in chapter 5.3.1.1, see also Fig. 5.10) for 121 BZ and 

123 BZ are presented. Average march velocity is equal to about 30km/h. Velocity 

calculation has been done using procedures described in chapter 5.3.2.2. 
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(a)           (b) 

Fig. 6.6. (a) Initial redeployment of the BLUE side, 4:00am and (b) the location of 121 BZ and 123 BZ, 
5:50am 

 

 

 

Fig. 6.7. Percentage fuel level regarding the starting level (4 825 litres) for 12111 kz (consisting of 13 
wheeled armoured "Rosomak" carriers) during march on the distance 110 km, from 4:00am  

to 7:30am 

 

Table 6.3. Average velocities between selected march checkpoints for 121 BZ and 123 BZ (in km/h) 

Unit S=>PS PS=>PD PD=>D S=>D 

121 BZ 12.32 39.65 18.24 29.54 

123 BZ 14.07 27.84 22.57 24.65 
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6.2. Knowledge-Based Pattern Recognition Tools to Support Mission 

Planning and Simulation 

6.2.1. A Short Overview of CAVaRS and Guru Systems 

In this section we present two tools to support mission planning and 

simulation, which have been built at the Cybernetics Faculty of the Military 

University of Technology in Warsaw (Poland) and the author of this work is  

a member of the team which has built them: (1) the deterministic simulator called 

CAVaRS (Course of Action Verification and Recommendation Simulation System) 

(Antkiewicz et al., 2011a; 2011b); (2) The System of Automatic Tools for Decision 

Support (SATDS) Guru (Antkiewicz et al., 2009c; Guru, 2005). 

The CAVaRS may be used as a part of a bigger system, the SATDS Guru, which 

supports the Polish C4ISR systems or it may work standalone. The deterministic 

and discrete time-driven simulator CAVaRS models two-face land conflict of 

military units on the company/battalion level. The simulator is implemented in the 

JAVA language. The model concerns a couple of processes of firing interaction and 

movement executed by a single military unit. These two complementary models 

use a terrain model described by a network of square areas, which aggregates 

movement characteristics with 200m×200m granularity (similarly to Zlocien 

system). The course of each process depends on many factors, among them: terrain 

and weather conditions, conditions and parameters of weapons the units are 

equipped with, the type of executed unit activities (attack, defence) and the 

distance between opposite units. 

Scenarios of the variants of the military scenario in the Knowledge Base Editor of 

the simulator CAVaRS can be created in two ways: manually and half-automatic. 

In manual mode the variant can be built using military unit templates stored in the 

CAVaRS database. In half-automatic mode the military scenario can be imported 

from other C3(4)ISR (e.g. C3ISR Jasmin) systems using NATO MIP-DEM 

(Multilateral Interoperability Program - Data Exchange Mechanism) and NATO  

MIP-JC3IEDM (Joint Consultation, Command and Control Information Exchange Data 

Model) integration database schema. The Knowledge Base Editor can import and 

transform data from MIP JC3IEDM standard data schema to CAVaRS data schema. 

This way is faster than manual mode, because all data of military units or at least 

most of them can be imported from other C3(4)ISR systems with detailed data such 

as unit location, equipment, weapons, etc. 

The purpose of The System of Automatic Tools for Decision Support (SATDS) – 

Guru is (Antkiewicz et al., 2009c): 

• using expert methods to support decision-making by a commander of an 

operational (tactical) level concerning planning military actions; 
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• developing tools for operational training of commanders and field-grade 

officers in planning military actions; 

• provision of software tools for continuing the collection of multiple experts' 

knowledge and the development of knowledge bases for developing user 

applications within the scope of expert support for decision-making by 

appropriate commanders. 

The Guru is an IT system to support, using expert methods, decision-making 

in the following Polish C2 (Command and Control) systems: for the ground forces – 

Kolorado and Szafran ZT (in cooperation with the Zlocien system), for the air force – 

Dunaj and Podbial, for the navy – Leba/MCCIS as well as planning joint operations 

on the operational level (see also Antkiewicz et al., 2008c; 2010e). 

6.2.2. Practical Example of Using CAVaRS 

The example shows elements of knowledge base and the algorithm of nearest 

pattern situation searching based on models defined in chapters 5.2.2 and 5.2.3. 

The main element of the system is the knowledge base, which consists of 

Pattern Situations (PS) (representation of the PDSS set from chapter 5.2.1). Each PS 

is connected to the set of Course of Actions (CoA). The example of two PSs and their 

CoAs are presented in Fig. 6.8.  

 

 

 
(a) 

Fig. 6.8. (a) Graphical representation of PS1 
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(b) 

Fig. 6.8. (b) An area of opposite forces for PS1 

 

The first PS (PS1, see Fig. 6.8a) is connected with two CoAs (see Fig. 6.9a and 
Fig. 6.9b). The second PS2 is shown in Fig. 6.10. Parameters have been fixed for 
each PS. Fig. 6.8b shows the analyzed area of enemy forces. Parameters of each PS 
are kept in the knowledge base (see also Fig. 1.1). Table 6.4 and Table 6.5 show 
values of PS parameters.  

 

  
(a)       (b) 

Fig. 6.9. (a) Graphical representation of PS1, CoA1; (b) Graphical representation of PS1, CoA2 

 

Coordinates of terrain area for PS1 (NW: north-west corner, NE: north-east 
corner, SW: south-west corner, SE: south-east corner): 

NW (LP)=515556N 0213922E ;   NE (PP)=515740N 0213053E ; 

SW (LT)=520056N 0214431E ;  SE (PT)=520254N 0213541E. 

Potential of own forces: mechanized 444; armoured 61.2; artillery 30; 

antiaircraft 0; other 0. 
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Table 6.4. Detailed values of PS1 parameters using notations from (5.1)   

i j 5,1
ijSD  

5,2
ijSD  

5,3
ijSD  

5,4
ijSD  

5,5
ijSD  

5,6
ijSD  

5,7
ijSD  

0 0 54% 1% 1% 0.069 0 0 0 

0 1 44% 4% 1% 0.116 0 0 0 

0 2 42% 15% 2% 0.186 0 17.46 94.13 

0 3 45% 9% 4% 0.21 190 16.32 23.75 

0 4 41% 8% 2% 0.252 80 5.2 0 

0 5 42% 24% 1% 0.176 0 0 0 

1 0 46% 23% 2% 0.12 0 0 0 

1 1 54% 5% 1% 0.162 0 0 0 

1 2 37% 15% 0% 0.231 0 26.98 140.8 

1 3 47% 13% 0% 0.158 25 5.71 21.35 

1 4 45% 10% 0% 0.177 25 1.62 0 

1 5 35% 0% 34% 0.168 0 0 0 

2 0 2% 0% 58% 0.096 0 0 0 

2 1 7% 0% 54% 0.135 0 0 0 

2 2 17% 0% 50% 0.183 0 0 0 

2 3 11% 0% 38% 0.138 0 0 0 

2 4 23% 0% 34% 0.162 0 0 0 

2 5 51% 0% 29% 0.179 0 0 0 

3 0 2% 0% 46% 0.168 0 0 0 

... ... ... ... ... ... ... ... ... 

5 5 25% 20% 0% 0.013 0 0 0 

 
 

 

Fig. 6.10. Graphical representation of PS2 

 

Coordinates of the terrain area for PS2 (NW: north-west corner, NE:  

north-east corner, SW: south-west corner, SE: south-east corner): 

NW (LP)=520120N 0213451E ;  NE (PP)=515943N 0214150E ; 

SW (LT)=515858N 0213135E ;  SE (PT)=515625N 0213736E. 
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Potential of own forces: mechanized 320; armoured 73.3; artillery 280; 

antiaircraft 0; other 0. 

 

 

Fig. 6.11. Current situation (CS) 

 

Table 6.5. Detailed values of PS2 parameters using notations from (5.1)   

i j 5,1
ijSD  

5,2
ijSD  

5,3
ijSD  

5,4
ijSD  

5,5
ijSD  

5,6
ijSD  

5,7
ijSD  

0 0 29% 93% 0% 0.01 0 0 0 

0 1 55% 48% 0% 0.06 0 0 0 

0 2 91% 1% 0% 0.04 8.62 4.49 0 

0 3 84% 10% 0% 0.04 5.38 2.81 0 

0 4 84% 11% 0% 0.03 0 5.85 27 

0 5 76% 30% 0% 0.01 0 0.65 3 

... ... ... ... ... ... ... ... ... 

2 2 88% 0% 0% 0.03 13 1.44 0 

2 3 84% 10% 0% 0.05 60 6.55 0 

2 4 59% 44% 0% 0.07 6 0.6 0 

2 5 77% 12% 0% 0.06 0 0 0 

3 0 66% 33% 0% 0.09 0 0 0 

3 1 83% 4% 0% 0.04 0 0 0 

3 2 88% 3% 0% 0.02 6.5 0.72 0 

3 3 80% 7% 0% 0.08 32.5 3.59 0 

3 4 82% 1% 0% 0.1 0 0 0 

3 5 81% 0% 0% 0.12 0 0 0 

4 0 40% 74% 0% 0.08 66.9 7.39 0 

4 1 62% 43% 0% 0.06 32.7 3.61 0 

4 2 85% 1% 0% 0.05 93.6 10.4 0 

4 3 70% 22% 0% 0.09 0 0 0 

4 4 69% 9% 0% 0.15 0 0 0 

4 5 87% 4% 0% 0.05 18.9 2.09 0 

... ... ... ... ... ... ... ... ... 

5 5 85% 6% 0% 0.05 85.1 9.41 0 
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Values of each PS parameters of the current situation (see Fig. 6.11) have been 

calculated. The algorithm for finding the most similar pattern situation compares 

the current situation parameters with each PS from the knowledge base using the 

method described in chapters 5.2.2 (the method from chapter 5.2.3 is still being 

developed and tested). As a result, the PS1 has been fixed according to the dist 

values (equations (5.7) and (5.9)) presented in Table 6.6 because:  

  1 2( , ) ( , )pot potdist CS PS dist CS PS<  and 1 2( , ) ( , )ter terdist CS PS dist CS PS< ,  

hence PS1 dominates PS2  from the RD (formula (5.12)) point of view. 

 

Table 6.6. Detailed values of dist parameters from (5.7) and (5.9) 

PS ( , )potdist CS PS  ( , )terdist CS PS  

PS1 203.61 1.22 

PS2 222.32 1.47 

6.3. Applications in Security and Crisis Management Systems 

6.3.1. MWGSP Approach 

In this chapter we will show how to use, described in chapter 5.2.3, the 

MWGSP approach with the Social Network (represented by Complex Network) 

analyzing and semantic-based terrorist threat indication as well as information 

diffusion in networks. Applications presented here are described in detail in 

(Bartosiak et al., 2011; Tarapata & Kasprzyk, 2009c; 2010e; Tarapata et al., 2010d). 

The method presented in (Tarapata et al., 2010d) introduces an original 

approach to knowledge representation as a semantic model, which is further 

processed by the inference algorithms and structure graph analysis towards  

a complex network (using the MWGSP model). Described models consist of 

experience gathered from intelligence experts and several open Internet 

knowledge systems such as the Global Terrorism Database. We have managed to 

extract core information from several ontologies and fuse them into one domain 

model aimed at providing the basis for indirect associations' identification method. 

Until now, scientists have tried to construct theoretical models describing the 

behaviour of real systems, which is the main reason of Complex Networks 

applications (Antkiewicz et al., 2009a; Barabasi & Reka, 2002; Kasprzyk, 2005; 

Newman, 2003; Strogatz, 2001; Watts & Strogatz, 1998). The main aim of research 

in this area is to uncover the mechanisms hidden in the structure of complex 

systems, which can further lead to the discovery of real networks characteristics 

and their explanation. Apparently, networks derived from real data (most often 

spontaneously growing) have "six degree of separation", power low degree 
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distributions, hubs occurring and many other interesting features. Complex 

Networks have Scale Free, Small Word and Clustering properties (Wang & Chen, 

2003) that make them accurate models of networks such as social networks, in 

particular, a terrorist organization with features mentioned above (Antkiewicz et 

al., 2008b; Najgebauer et al., 2007a). The Scale Free and Small World networks, while 

being fault tolerant, are still very prone to acts of terrorism. The Scale Free feature 

distinguish immunity against random attacks (it is hard to hit a hub). The Small 

World feature can dramatically affect communication among network nodes. 

For the purpose of this application we have developed a transformation from  

a created semantic network into a set of Complex Networks. First we have to choose 

the ontology, which is the most significant from the analysis point of view. It leads 

to leave only a subset of nodes and edges connecting them. At this moment we 

have produced a graph with a uniform node and edge type. As a result of the 

transformation, one of the possible Complex Networks has been generated. In order 

to find a representation of a terrorist organization as a complex network, we 

should apply the algorithm presented in Fig. 6.12. 

 

 
Fig. 6.12. The transition between a semantic network and a complex network using ontology 

filtering (Tarapata et al., 2010d) 

 

Formally, we can write transformation T of the semantic network S1 into  

a complex network S2 as follows (Tarapata et. al, 2010d):  

1 2:
FO

T S S→ , where FO describes filtering ontology from Fig. 6.12, and: 

1 1

1 1

1 1 1 1 1 {1,..., } 1 {1,..., }, , { ( )} , { ( )}i i LF j j LH
n N a A

S G N A f n h a
∈ ∈

∈ ∈

= = , N1, A1 – sets of graph nodes and 

arcs, respectively, 1 1 1:i if N Z→ – the i-th function described on the graph nodes, 

11,...i LF= , (LF1 – number of node’s functions); 
1 1 1:j jh A Z→ – the j-th function 

described on the graph arcs, 11,...j LH= (LH1–number of arc functions), *Z – any set 

(e.g. types of vertices); S2 – defined by analogy but it has a single function 

described on the nodes and arcs: 

2 22 2 2 2 2 2, , { ( )} ,{ ( )}n N a AS G N A f n h a
∈ ∈

= =
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Next, the MWGSP approach may be used to analyse such a knowledge 

representation. For example, in Fig. 6.13 we have a terrorist net that was prepared 

and executed during the September 11, 2001 attacks (Krebs, 2000) and in Fig. 6.14 

we have a subnet of a terrorist net that hijacked airplanes on the September 11, 

2001 with two cases: a long time before hijacking (a) and a short time before 

hijacking (b).  

 

 

Fig. 6.13. Terrorist net that prepared and executed the September 11, 2001 attacks (Krebs, 2000) 

 

When we use the network from Fig. 6.14 as a "normal" communication between 

terrorists then we can use the MWGSP approach to recognize the threat situation 

(structural similarity between the net from Fig. 6.14a and Fig. 6.14a (self-similarity) 

is equal 0.990 and between the net from Fig. 6.14a and Fig. 6.14b is equal 0.880: this 

difference can indicate a threat situation; we can also set a threshold value for 

similarity changes, which in the opinion of experts, indicate a threat situation). We 

can also use quantitative description of these networks (similar to Fig. 6.15) and 

analyse them using MWGSP approach. 
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a)  

Fig. 6.14. Terrorist net that hijacked airplanes on 
hijacking; (b) a short time before hijacking

 

Another application is presented in 

a communication network (e

can consider, for example, a

organization by analogy). Nodes represent users/workers of the company. 

number inside each node describes 

In Fig. 6.15a the e-mails net for a "normal" week has been presented. In 

Fig. 6.15c, Fig. 6.15d communications inside the company 

every week (for the fixed time window

that the 1st week is at least

1st week we obtain the smallest value of 

combines a structural and 

 

 

a)  
 

c)  

Fig. 6.15. E-mails net in hierarchical company: (a) 
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        b) 

Terrorist net that hijacked airplanes on the September 11, 2001: (a) a long time before 
hijacking; (b) a short time before hijacking 

ther application is presented in Fig. 6.15. Here we 

communication network (e-mails) in a company with a hierarchical structure (we 

for example, a communication network inside a 

organization by analogy). Nodes represent users/workers of the company. 

umber inside each node describes the number of e-mails that were sent by users. 

mails net for a "normal" week has been presented. In 

d communications inside the company have been 

fixed time window the length equals 1 week). Let

week is at least a similar week to a "normal" week (see 

week we obtain the smallest value of the scalar function H(G) fr

structural and a quantitative similarity to a "normal" week).

  
        b) 

  
        d) 

mails net in hierarchical company: (a) "normal" week; (b) 1st week; (c) 2
(d) 3rd week 

and Simulation... 201 

 

September 11, 2001: (a) a long time before 

. Here we have shown  

hierarchical structure (we 

a criminal/terrorist 

organization by analogy). Nodes represent users/workers of the company. The 

were sent by users. 

mails net for a "normal" week has been presented. In Fig. 6.15b, 

have been shown for 

length equals 1 week). Let us observe 

(see Table 6.7: for the 

from (5.27), which 

"normal" week). 

 

 
 

week; (c) 2nd week;  
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Table 6.7. Values of scalar function H(G) combining structural (weight α1) and quantitative  

(weight α2) similarity measures between graphs representing the e-mail net during a "normal" week 
and between 3 weeks from Fig. 6.15 

Compared graphs Weights (α1 ; α2) 

(0; 1) (0.5; 0.5) (1; 0) 

1st week net -0.694 0.144 1 

2nd week net -0.646 0.177 1 

3rd week net -0.643 0.160 1 

 

The presented MWGSP idea is an original attempt at integrating theories and 

practices from many areas, in particular: semantic models, social networks, graph 

and network theory, decision theory, data mining and security, as well as 

multicriteria optimization. It utilizes the theoretical basis for a very practical 

purpose of growing importance and demand: widely understood countering 

terrorism. Moreover, the presented approach combines well-known structural and 

rarely considered non-structural (quantitative) similarity between graphs as 

models of objects and can significantly improve social network analysis. Our 

models and methods of network analysis have been used in the criminal justice 

domain to search large datasets for associations between crime entities in order to 

facilitate crime investigation. Let us note that we can easily adopt centrality 

measures from social networks to use them or their combinations instead sij in 

(5.17) (Bartosiak et al., 2011; Tarapata et al., 2010d). It is also possible to use MWGSP 

approach in medical applications to recognize of illness patterns (Ameljańczyk, 

2010a; 2010b). However indirect association and link analysis still faces many 

challenging problems, such as information overload, high search complexity, and 

heavy reliance on domain knowledge. In the papers (Antkiewicz et al., 2009a; 

Kasprzyk, 2008; Tarapata & Kasprzyk, 2010e) have been shown why and how the 

Complex Networks with the Scale Free and Small World feature can help optimize the 

topology of communication networks. The first term – Scale Free feature – is a good 

protection against random attacks (it is hard to hit a central node). The second term 

– Small World feature – can dramatically affect communication among network 

nodes. Thus both concepts and underlying theories are highly pertaining to the 

presenting idea subject and objectives.  

6.3.2. Specific Paths Planning Models 

Specific paths planning models applied to crisis management systems, paths 

planning for transport of hazardous materials have been described in other works 

of the author (Tarapata, 1999c; 2000e; 2006b; 2008f; Tarapata & Daleki, 2008g; 

Tarapata et al., 2009b; 2009d; Tarapata & Mierzejewski, 2010f). 

One of the most important models being used for paths planning in many 

applications (e.g. in crisis management systems) are time-dependent networks (TDN) 
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(Brodal & Jacob, 2004; Cooke & Halsey, 1996; Dean, 2004; Kaufman et al., 1993; 

Orda & Rom, 1990; 1991; 1996; Sherali et al., 1998; Tarapata, 1999c; 2000e; 2008f; 

Wellman et al., 1995; Wu et al., 2005). TDN is the network in which at least one 

function (described on the arcs and/or on the nodes) depends on time. For 

example, in a road traffic network travel time between two crossroads i and k 

(nodes of the network) depend on the starting time in the i-th crossroad. This time 

depends on: traffic lights configuration, traffic jams, current road load (different 

values in peak hours and outside peak hours), etc. Let us note that network So(t) 

defined  in chapter 2.3 is time-dependent, too. 

In generality, a time-dependent network S(t) can be defined as follows:  

( ) , , ( )S t G D t= 〈 ∅ 〉         (6.1) 

where: ( ),G GG V A= – Berge's graph (sometimes, we define G(t) instead G for 

dynamically changed structure of the network), GV – set of G nodes (e.g. 

crossroads), G G GA V V⊂ × – set of G arcs (links) (e.g. road parts between crossroads), 

= =,  G GA A V V , ( ) ( ){ }( ) : ,ik GD t d t i k A= ∈  – set of delay functions, ( )ikd t – delay 

function between nodes i and k, 
( ),

:
G

ik
i k A

d T T
∈

∀ → , T – set of moments, T=[0,∞). The 

function ( )ikd t  describes the time value, which is needed to travel between nodes  

i and k taking into account that the starting moment from node i is equal to t. 

We define two types of link (arc) models (Orda & Rom, 1990):  

• frozen link model – time and cost of travel by a link is constant, i.e. when we start 

from i to k in the moment of 0t , we need exactly a time of 0( )ikd t  and we can 

achieve the k node in the moment 1 0 0( );ikt  t  d t= +  

• elastic link model – time cost of travel by a link is changeable, i.e.  when we start 

from i to k in the moment of 0t  we will achieve the k node in such a first 

moment of 1 0t t≥ , that the following formula is fulfilled: 1 0 1( )ikt t d t− ≥ . 

Additionally, two different types of link models are considered (Orda & Rom, 

1990): 

• FIFO link model – for arc ( ),i k  the following formula is satisfied:  

1 0
1 1 0 0( ) ( )ik ik

t t
t d t t d t

>

∀ + ≥ +

       
(6.2) 

• non-FIFO link model – for arc ( ),i k  the following formula is satisfied (see 

Fig. 6.16): 

 
1 0

1 1 0 0( ) ( )ik ik
t t

t d t t d t
>

∃ + < +

       
(6.3) 

It is important to note, that the elastic link is always a FIFO link, but the frozen link 

cannot be a FIFO link. If all arcs of S(t) are FIFO links, then network S(t) is a FIFO 



6. Selected Applications in Real Systems 

 

204 

network. Otherwise we have a non-FIFO network. Most often in practice we have 

FIFO networks. In non-FIFO networks we can start later and achieve the destination 

node earlier than usually (see Fig. 6.16). 

From the non-FIFO property result three different politics of travel across the 

network (Orda & Rom, 1990; 1991): 

• unrestricted waiting – unrestricted waiting is permitted in all nodes of the 

network (like in the public transportation network: e.g. bus-stops can be  

a "depository" where a traveller can wait for a good bus); 

• forbidden waiting – waiting is prohibited in all nodes of the network; 

• source waiting – waiting is prohibited in all nodes of the network excluding the 

source node. 

For the case in which the waiting is permitted, the function Dik(t) describing the 

travel time from node i to node k with an optimal waiting time in node i is defined 

as follows (see Fig. 6.16): 

( ) { }

0
min ( )ik ikD t d t

τ

τ τ

≥

= + +

       
(6.4) 

 

 

Fig. 6.16. Graph of the function dik(t) and related to this the function Dik(t) (see (6.4)). Function dik(t)  
describes the non-FIFO arc, because, for example, for t2>t0: 2 2 0 0( ) ( )   (4 2 1 9, 5)ik ikt d t t d t+ < + + < +  

 

 In the paper (Tarapata, 2006a) a routing problem in computer networks 

(similar to path planning in road networks) with a non-FIFO model of the network 

as well as permitted and prohibited waiting in nodes (two different cases) has been 

considered. The modified Dijkstra's algorithm with the arc function dik(t) (or in the 

second case Dik(t)) based on the approach presented in (Orda & Rom, 1990) has 

been used. Functions dik(t) or Dik(t) have forms, which allow accommodating to the 

predicted network load (capacity) by using the network load prediction model 

with piecewise linear function based on historical load (see details in (Tarapata, 

2006a)). Computational complexity of the algorithm is the same as the Dijkstra's 



Z. Tarapata − Models and Algorithms for Knowledge-Based Decision Support and Simulation... 

 

205 

(with the assumption that we have the dik(t) function) that is ( log )O A V . Practical 

examples of using the method in transportation threat prediction, identification 

and countering have been considered in details in (Tarapata, 2006c; 2007c; Tarapata 

et al., 2009b; 2009d; Tarapata & Mierzejewski, 2010f). 

Another interesting traffic model, which can be used to model transportation 

threats (e.g. transport of hazardous materials) and borrowed from car navigation 

systems is the simplest path model (Duckham & Kulik, 2003; Mark, 1986). The 

simplest path algorithm does not use distance or any other metric information. The 

algorithm computes the simplest paths using only a measure of intersection 

(navigation instruction) complexity proposed in the work (Mark, 1986). Intersection 

complexity is classified into frames, each frame having several slots for different 

elements of an intersection. A generic turn intersection is modelled as  

a frame containing a total of 9 slots. Each slot covers information on whether to 

turn left or right (3 slots), how to recognize the moment to turn (2 slots), how to 

recognize if the navigator has gone too far (1 slot), and a summary information 

providing an overview of the turn (3 slots). We can note that the greater value of 

the measure the more complicated the description of the intersection; hence the 

simplest path is such that the total value of the intersection complexity measure for 

all nodes belonging to a path is minimal among other paths. This measure can be 

treated as a kind of penalty for intersection crossing. In context of transportation 

threats this measure may describe a manoeuvre risk on the intersection. In 

particular, if we plan a transport of hazardous materials then one of the 

minimization criteria may be the total manoeuvre risks on a path. Therefore, in this 

case we may find the simplest path for which the total manoeuvre risk is minimal. 

Authors of the paper (Duckham & Kulik, 2003) have proposed some modifications 

of the approach presented by Mark. In the paper (Tarapata et al., 2009d) it has been 

shown how to use the idea of simplest paths to plan hazardous materials 

transportation. 

One of the methods to find the simplest path is the definition of transformation µ 

from graph G=(V,E) to graph G’=(E’,ε). The set of nodes E’ in G’ is created from the 

set of arcs E in G where direction of arcs are ignored (i.e. (vi,vj)=(vj,vi) in E’), but 

( ) ε∈1 2 1 2( , ),( , )u u v v , if both v1 and v2 are achievable from u1 and u2 in G (see Fig. 

6.17). Arc cost function c will have an interpretation of the intersection complexity 

measure. To find the simplest path from v in G we must find the shortest path from 

any node of G’, which contains v, using the arc function c. 

The presented algorithm can be considered in two stages: (1) transformation from 

G to G’ and (2) finding the shortest paths from the source node to the destination 

using one of the shortest paths algorithms, e.g. the Dijkstra's algorithm. 

Complexity of this algorithm is equal ( )' log 'O mn m n+ , where n, n' – number of 

nodes in G and G', m, m' – number of arcs in G and G', respectively. 
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Fig. 6.17. Transformation µ of G in G’ (Duckham & Kulik, 2003) 

 

To model the problem of hazardous (e.g. chemical) materials transportation 

the disjoint path planning models are also used to minimize risk of a potential 

accident and chemical threats. Then, we can use algorithms presented in chapter 

3.4 to solve the problem. The other important problems related to hazardous 

materials transportation and algorithms to solve them are presented in the works 

(Berman et al., 2007; Bianco et al., 2009; Carotenuto et al., 2007a; 2007b; Chen et al., 

2008; Cox, 1984; Erkut et al., 2003; Wijeratne et al., 1993). 

Presented models and algorithms can be also used in selected problems for 

modelling and optimization of transportation systems (Ambroziak, 1998; Jacyna, 

2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Summary and Conclusions 

 

In the book selected models and algorithms related to decision support and 

simulation of complex processes in knowledge-based systems for defence and 

transport applications have been presented. Integration of these models and 

algorithms with computer tools causes that decision making in complex situations 

may be easier, faster and more effective than without a computer. 

Verification of the presented in chapter 1.2 research theses has been done. 

Thesis T1 has been verifying across the whole book, especially in chapter 6 where 

applications and usefulness of presented models and algorithms in  

knowledge-based decision support and simulation systems have been described. 

All presented models and algorithms have taken information from two knowledge 

bases (KB): operational-tactical KB and terrain KB. The first KB has been used to 

collect knowledge used to express the character of a digital battlefield during 

automation of military decision-making, such as: military rules, decision situation 

patterns and recognition rules, course of action (CoA) patterns, etc. The second KB 

(terrain KB) collects pre-processed information from the terrain database. For 

example, in chapter 2.3 we have presented a network model of the terrain (with 

rule-based functions described on the network's nodes and arcs) in the Zlocien 

simulation system, which is based on pre-processed information from the terrain 

database. In chapters 5.2−5.3 we have used operational-tactical KB to identify 

decision situations and automatization of the march process. Thesis T2 has been 

verified especially in chapter 5. For example, by using software decision automata 

on the battalion level, which replace commanders of this level in the Zlocien 

simulation system or the Guru decision support system, we save a lot of time and 

cost, and decrease the number of military trainees in order to conduct Computer 

Assisted Exercises (CAXes). Thesis T3 has been verified especially in chapters 3,  

4 and 6.1. The presented algorithms have turned out to be effective and useful in 

practical applications. 

One of the most important features of simulation and decision models is their 

adequacy. The good simulation model should represent a real system as accurately 

as possible. It should include some internal mechanisms, which give possibilities to 

elastically modify values of the model’s parameters for system model tuning. As it 

has been written, battlefield processes are very complex and relatively poorly 

recognized, because of a small set of results of real conflicts. For such processes it is 

particularly justified using parameterized simulation models to calibrate (tune) it 



Summary and Conclusions 

 

208 

(Hofmann, 2005). As examples of such simulated battlefield processes we can 

consider target searching, firing and movement (Antkiewicz et al., 2006): for this 

example, models and algorithms have been calibrated in the Zlocien system during 

the process of putting this system into practice with the participation of target 

users and military experts. The problem of calibrating models and methods is 

especially essential in knowledge-based systems. In KB systems the knowledge 

should be still acquired to learn the system. But acquisition of new knowledge may 

cause that algorithms, which based on this knowledge should be calibrated 

(learned) with new data. However, taking into account that the calibration process 

(learning in KB systems) has an influence on the model adequacy, it should be 

done very carefully. 

To better use the knowledge, different ways of its representation are needed. 

In recent years, in order to increase possibilities of knowledge use, the semantic 

networks and ontologies were developed. Semantic networks give one of the most 

important advantages – scalability and flexibility of knowledge representation. 

They extend relational and object models. Search mechanisms are able to provide 

clustered data based on semantics and provide even more complex operations 

such as merging information from all relevant documents, removing redundancy, 

and summarizing where appropriate. Ontology is used as a tool for describing and 

representing selected knowledge branches that is medicine, finances, military etc. 

It deals with questions concerning what entities exist or can be said to exist, and 

how such entities can be grouped, related within a hierarchy, and subdivided 

according to similarities and differences. The use of semantic metadata and 

ontologies are also crucial for integrating information from heterogeneous sources, 

whether within one organisation or across organisations. As it has been written in 

chapter 1, the information sources are typically widely distributed and subject to 

continuous change. In such a case, in order to improve situational awareness, data 

fusion and integration should be done (Smart et al., 2005). Some applications of 

these technologies and methods have been presented in selected papers of the 

research team, which the author of this book is a member: (Antkiewicz et al., 2008a; 

2008b; 2010a; 2010b; 2010c; 2010d; Chmielewski, 2008a; Chmielewski & Kasprzyk, 

2008b; Chmielewski & Gałka, 2010a; Chmielewski & Nogalski, 2010b; Chmielewski 

et al., 2010c; Koszela & Chmielewski, 2008; Najgebauer et al., 2004c; 2007a; 2008d; 

Tarapata et al., 2010d; 2010h). 

Selected algorithms presented in the book use approximation techniques: in 

this case it seems to be essential to provide necessary and sufficient conditions for 

obtaining optimal solutions and estimate theoretical approximation coefficient for 

them. Moreover, it seems to be essential to examine the sensitivity of the changing 

values of different parameters of these algorithms (e.g. in the SGDP algorithm). 
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Finally, in the author's opinion the best verification of the presented models 

and algorithms is their practical use in real systems. The majority of them have 

been used in the following computer decision support and/or simulation systems: 

Zlocien, Guru, MSCombat, CAVaRS. That does not mean these models and 

algorithms cannot be improved. They should still be developed, calibrated and 

verified with domain experts. However, these practical applications can constitute 

an excellent field to conduct further works and research related to the problems 

being described. 
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Streszczenie 

 

W monografii Modele i algorytmy wspomagania decyzji oraz symulacji oparte na 

wiedzy w zastosowaniach obronnych i transportowych zaprezentowano nowe  

i przeanalizowano istniejące modele i algorytmy wspomagania decyzji i symulacji 

w środowisku opartym na wiedzy, w zastosowaniach obronnych  

i transportowych. Skupiono się przede wszystkim na złożoności obliczeniowej 

oraz dokładności analizowanych algorytmów, jak również ich użyteczności  

w praktycznych zastosowaniach. Wiele z analizowanych modeli i algorytmów ma 

charakter interdyscyplinarny, jednakże w większości przypadków skupiono się na 

omówieniu zastosowań we wspomnianych systemach transportowych  

i obronnych. Zwrócono również uwagę na wykorzystanie opisywanych modeli  

i algorytmów w systemach zarządzania kryzysowego i wczesnego ostrzegania.  

Poszukiwanie rozwiązania złożonych problemów decyzyjnych, do których 

należą również problemy związane z procesami pola walki, może być 

rozpatrywane, jako pewien zbiór czynności, których powodzenie realizacji zależy 

od dostępności źródeł informacji oraz, w szczególności, od doświadczenia  

i umiejętności decydenta. Dlatego też celowym jest stosowanie komputerowych 

systemów wspomagania decyzji i symulacji, w których wiedza i doświadczenie 

decydenta wspomagane są komputerowymi bazami wiedzy, modelami  

i algorytmami, dzięki którym podejmowanie decyzji oraz symulowanie skutków 

tych decyzji stają się łatwiejsze, szybsze i bardziej efektywne. Wykorzystanie tego 

typu systemów jest szczególnie uzasadnione w zastosowaniach wojskowych. 

Procesy dowodzenia na polu walki, w warunkach stresu i ograniczonego czasu, są 

skomplikowane i złożone. Zastosowanie komputerowych systemów wspomagania 

decyzji i symulacji pozwala, przynajmniej częściowo, wyeliminować negatywny 

wpływ stresu na podejmowane decyzje, skrócić czas wypracowania tych decyzji 

oraz symulować ich skutki. 

Do grupy najistotniejszych problemów należą problemy transportowe,  

w szczególności związane z planowaniem przemieszczania. Problemy te są istotne 

nie tylko w zastosowaniach wojskowych, ale również w: sieciach komputerowych, 

mobilnych robotach, systemach ewakuacji, systemach nawigacji samochodowej, 

grach komputerowych. W zastosowaniach wojskowych problemy te spotykane są 

zarówno w symulatorach pola walki (wyznaczanie tras przed rozpoczęciem 

symulacji działań, jak i w trakcie ich trwania), jak również w systemach 

wspomagania decyzji, które wspierają zautomatyzowane systemy dowodzenia 

klasy C3(4)ISR. Jako nieodłączne w tego typu systemach stanowią o ich 
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adekwatności, efektywności i użyteczności, dlatego też są jednym z głównych 

źródeł zainteresowania tej monografii. Opisywane systemy powinny bazować na 

wiedzy, a modele i algorytmy wspomagania decyzji oraz symulacji powinny z tej 

wiedzy korzystać. Wiedza jest przetworzoną, na podstawie pewnych reguł, 

informacją pochodzącą z różnego rodzaju tematycznych baz danych (o terenie, 

regulaminów działań taktycznych, uzbrojenia i sprzętu wojskowego, struktur 

wojsk, itp.) i obejmuje takie elementy, jak: przejezdność wskazanych fragmentów 

terenu, wzorce sytuacji decyzyjnych, wzorce wariantów działań dla różnych 

rodzajów działań, itd. Celem monografii jest dostarczenie takich właśnie modeli  

i algorytmów wspomagania decyzji i symulacji w zastosowaniach obronnych  

i transportowych, które bazują na tejże wiedzy. 

W monografii zdefiniowano szereg modeli i algorytmów planowania tras 

przemieszczania: dekompozycyjnych i wielorozdzielczych, wielokryterialnych, 

rozłącznych. Zdefiniowano jedno- i dwukryterialny problem planowania 

zsynchronizowanego przemieszczania wielu obiektów oraz podano algorytmy 

rozwiązania tych problemów. Problem synchronizacji rozpatrywano w dwóch 

kategoriach: związanych z czasami osiągnięcia pewnych punktów synchronizacji 

oraz z pewnymi wzorcami ugrupowania. Dla wszystkich nowych algorytmów 

oszacowano ich złożoność obliczeniową i dokładność, udowodniono pewne ich 

własności, wskazano zastosowania, podano wyniki badań eksperymentalnych 

(m.in. bazując na systemach, w których zostały zaimplementowane). Porównano 

również te wyniki z wynikami ze znanych z literatury algorytmów; w wybranych 

przypadkach pokazano, jak można wykorzystać istniejące algorytmy do 

rozwiązania sformułowanych problemów. Sformułowano problem identyfikacji 

sytuacji decyzyjnych na polu walki, jako problem rozpoznawania pewnego wzorca 

oraz opisano dwa podejścia do rozwiązania problemu: podejście oparte  

o porównywanie wektorów oraz wyznaczanie wielokryterialnego podobieństwa 

grafów ważonych. Podano przykład wykorzystania obu podejść do 

rozpoznawania rzeczywistych sytuacji na polu walki. Zdefiniowano automat 

decyzyjny do marszu, który zastępuje dowódcę szczebla batalionu w systemie 

symulacyjnym typu CGF (Computer Generated Forces), opisano jego własności  

i zastosowanie. Przedstawiono wybrane modele i algorytmy symulacji 

przemieszczania pojedynczych i grupowych obiektów. Przedstawiono również 

różne metody modelowania terenu, jako podstawowego elementu środowiska 

działań. Podano przykład modelu terenu wykorzystywanego w symulacyjnym 

systemie Złocień oraz jednym z systemów wspomagania decyzji. 

Monografię podsumowuje prezentacja opisywanych modeli i algorytmów  

w rzeczywistych systemach symulacyjnych i wspomagania decyzji takich, jak: 

Złocień, Guru, MSCombat, CAVaRS. Opisano również wybrane zastosowania  

w systemach zarządzania kryzysowego i wczesnego ostrzegania. 
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